Graded limits of finite-dimensional modules over quantum loop algebras

Katsuyuki Naoi

Tokyo University of Agriculture and Technology

Tsukuba Workshop on Infinite-Dimensional Lie Theory and Related Topics

October 21st, 2014

Introduction

Theorem (Jacobi-Trudi determinant formula)
For a partition $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{n}\right)$,

$$
s_{\lambda}(x)=\operatorname{det}\left(h_{\lambda_{i}-i+j}(x)\right)_{1 \leq i, j \leq n}
$$

$s_{\lambda}(x)$: Schur polynomial, $h_{k}(x)$: complete symm. polynomial.

Introduction

Theorem (Jacobi-Trudi determinant formula)

For a partition $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{n}\right)$,

$$
s_{\lambda}(x)=\operatorname{det}\left(h_{\lambda_{i}-i+j}(x)\right)_{1 \leq i, j \leq n}
$$

$s_{\lambda}(x)$: Schur polynomial, $h_{k}(x)$: complete symm. polynomial.
Translation in the $\mathfrak{s l}_{n+1}$-modules
$\lambda \in P^{+}$: dom. int. wt $\rightsquigarrow \lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{n}\right)$ by $\lambda_{i}=\sum_{k \geq i}\left\langle h_{k}, \lambda\right\rangle$ $\operatorname{ch} V(\lambda)=s_{\lambda}(x), \quad \operatorname{ch} V\left(k \varpi_{1}\right)=h_{k}(x) \quad\left(V(\lambda):\right.$ simple $\mathfrak{s l}_{n+1}$-mod. $)$

$$
\rightsquigarrow \operatorname{ch} V(\lambda)=\operatorname{det}\left(\operatorname{ch} V\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n} .
$$

Introduction

Q. Does this formula hold in other types?

$$
\operatorname{ch} V(\lambda) \neq \operatorname{det}\left(\operatorname{ch} V\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1}
$$

if $\mathfrak{g} \neq \mathfrak{s l}_{n+1}$ (though there may be several generalizations.)

However this does hold in other types, if the \mathfrak{q}-modules are replaced by $\underline{U_{q}(\mathcal{L g}) \text {-modules! More precicely, we can show that }}$

$$
\operatorname{ch} L_{q}(\lambda)=\operatorname{det}\left(\operatorname{ch} L_{q}\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)
$$

for \mathfrak{g} of type $A B C D$, where $L_{q}(\mu)$ are minimal affinizations (a special class of f.d. simple $U_{q}(\mathcal{L g})$-modules explained later).

Introduction

Q. Does this formula hold in other types? No!

$$
\operatorname{ch} V(\lambda) \neq \operatorname{det}\left(\operatorname{ch} V\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n},
$$

if $\mathfrak{g} \neq \mathfrak{s l}_{n+1}$ (though there may be several generalizations.)
However this does hold in other types, if the g -modules are replaced by $\underline{U_{q}(\mathcal{L g}) \text {-modules! }}$ More precicely, we can show that $\operatorname{ch} L_{q}(\lambda)=\operatorname{det}\left(\operatorname{ch} L_{q}\left(\left(\lambda_{i}-i+j\right) \omega_{1}\right)\right)$
for \mathfrak{g} of type $A B C D$, where $L_{q}(\mu)$ are minimal affinizations (a special class of f.d. simple $U_{q}(\mathcal{L g})$-modules explained later)

Introduction

Q. Does this formula hold in other types? No!

$$
\operatorname{ch} V(\lambda) \neq \operatorname{det}\left(\operatorname{ch} V\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n},
$$

if $\mathfrak{g} \neq \mathfrak{s l}_{n+1}$ (though there may be several generalizations.)
However this does hold in other types, if the \mathfrak{g}-modules are replaced by $\underline{U_{q}(\mathcal{L g}) \text {-modules! }}$ More precicely, we can show that

$$
\operatorname{ch} L_{q}(\lambda)=\operatorname{det}\left(\operatorname{ch} L_{q}\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}
$$

for \mathfrak{g} of type $A B C D$, where $L_{q}(\mu)$ are minimal affinizations (a special class of f.d. simple $U_{q}(\mathcal{L})$-modules explained later).

Plan

1. Definition of minimal affinizations $L_{q}(\lambda)$
2. Main Theorem (JT formula for $\operatorname{ch} L_{q}(\lambda)$)
3. Proof (Combination of results proved by
[N], [Chari-Greenstein], [Sam])
In the proof, graded limits (\mathbb{Z}-graded $\mathfrak{g} \otimes \mathbb{C}[t]$-modules) are used.

Plan

1. Definition of minimal affinizations $L_{q}(\lambda)$
2. Main Theorem (JT formula for $\operatorname{ch} L_{q}(\lambda)$)
3. Proof (Combination of results proved by
[N], [Chari-Greenstein], [Sam])
In the proof, graded limits (\mathbb{Z}-graded $\mathfrak{g} \otimes \mathbb{C}[t]$-modules) are used.

Plan

1. Definition of minimal affinizations $L_{q}(\lambda)$
2. Main Theorem (JT formula for $\operatorname{ch} L_{q}(\lambda)$)
3. Proof (Combination of results proved by

> [N], [Chari-Greenstein], [Sam])

In the proof, graded limits (\mathbb{Z}-graded $\mathfrak{g} \otimes \mathbb{C}[t]$-modules) are used.

Minimal affinization

\mathfrak{g} : simple Lie algebra of rank n,
$\mathcal{L} \mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]:$ loop algebra, $\quad([x \otimes f, y \otimes g]=[x, y] \otimes f g)$ $U_{q}(\mathcal{L} \mathfrak{g})$: quantum loop algebra $/ \mathbb{C}(q)(q$-analog of $U(\mathcal{L g}))$
$U_{q}(\mathfrak{g})$: quantum group assoc. with $\mathfrak{g}(q$-analog of $U(\mathfrak{g}))$

Fact
(1) $\{$ f.d. simple \mathfrak{g}-mod. $\} \stackrel{1: 1}{\longleftrightarrow} P^{+} \stackrel{1: 1}{\longleftrightarrow}$ \{f.d. simple $U_{q}(\mathfrak{g})$-mod $\}$
(2) The cat. of f.d. \mathfrak{g}-modules and $U_{q}(\mathfrak{g})$-modules are semisimple. (3) $\operatorname{ch} V(\lambda)=\operatorname{ch} V /(\lambda)$

Minimal affinization

\mathfrak{g} : simple Lie algebra of rank n,
$\mathcal{L} \mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]:$ loop algebra, $\quad([x \otimes f, y \otimes g]=[x, y] \otimes f g)$ $U_{q}(\mathcal{L} \mathfrak{g})$: quantum loop algebra $/ \mathbb{C}(q)(q$-analog of $U(\mathcal{L g}))$
$U_{q}(\mathfrak{g})$: quantum group assoc. with $\mathfrak{g}(q$-analog of $U(\mathfrak{g}))$

Fact
(1) $\{$ f.d. simple \mathfrak{g}-mod. $\} \stackrel{1: 1}{\longleftrightarrow} P^{+} \stackrel{1: 1}{\longleftrightarrow}$ \{f.d. simple $U_{q}(\mathfrak{g})$-mod $\}$
(2) The cat. of f.d. \mathfrak{g}-modules and $U_{q}(\mathfrak{g})$-modules are semisimple. (3) $\operatorname{ch} V(\lambda)=\operatorname{ch} V /(\lambda)$

Minimal affinization

\mathfrak{g} : simple Lie algebra of rank n,
$\mathcal{L} \mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]:$ loop algebra, $\quad([x \otimes f, y \otimes g]=[x, y] \otimes f g)$ $U_{q}(\mathcal{L g})$: quantum loop algebra $/ \mathbb{C}(q)(q$-analog of $U(\mathcal{L g}))$
$U_{q}(\mathfrak{g})$: quantum group assoc. with $\mathfrak{g}(q$-analog of $U(\mathfrak{g}))$

Fact
(1) $\{$ f.d. simple \mathfrak{g}-mod. $\} \stackrel{1: 1}{\longleftrightarrow} P^{+} \stackrel{1: 1}{\longleftrightarrow}$ \{f.d. simple $U_{q}(\mathfrak{g})$-mod $\}$
(2) The cat. of f.d. \mathfrak{g}-modules and $U_{q}(\mathfrak{g})$-modules are semisimple. (3) $\operatorname{ch} V(\lambda)=\operatorname{ch} V_{q}(\lambda)$

Minimal affinization

\mathfrak{g} : simple Lie algebra of rank n,
$\mathcal{L} \mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]:$ loop algebra, $\quad([x \otimes f, y \otimes g]=[x, y] \otimes f g)$ $U_{q}(\mathcal{L g})$: quantum loop algebra $/ \mathbb{C}(q)(q$-analog of $U(\mathcal{L g}))$
$U_{q}(\mathfrak{g})$: quantum group assoc. with $\mathfrak{g}(q$-analog of $U(\mathfrak{g}))$

Fact
(1) $\{$ f.d. simple \mathfrak{g}-mod. $\} \stackrel{1: 1}{\longleftrightarrow} P^{+} \stackrel{1: 1}{\longleftrightarrow}$ \{f.d. simple $U_{q}(\mathfrak{g})$-mod $\}$
(2) The cat. of f.d. \mathfrak{g}-modules and $U_{q}(\mathfrak{g})$-modules are semisimple. (3) $\operatorname{ch} V(\lambda)=\operatorname{ch} V(\lambda)$

Minimal affinization

\mathfrak{g} : simple Lie algebra of rank n,
$\mathcal{L} \mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]:$ loop algebra, $\quad([x \otimes f, y \otimes g]=[x, y] \otimes f g)$
$U_{q}(\mathcal{L g})$: quantum loop algebra $/ \mathbb{C}(q)$ (q-analog of $\left.U(\mathcal{L g})\right)$
\cup
$U_{q}(\mathfrak{g})$: quantum group assoc. with $\mathfrak{g}(q$-analog of $U(\mathfrak{g}))$
(Note: $\left.\mathfrak{g}=\mathfrak{g} \otimes 1 \subseteq \mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]=\mathcal{L} \mathfrak{g}\right)$
Fact
(1) $\{$ f.d. simple \mathfrak{g}-mod. $\} \stackrel{1: 1}{\longleftrightarrow} P^{+} \stackrel{1: 1}{\longleftrightarrow}$ \{f.d. simple $U_{q}(\mathfrak{g})$-mod $\}$
(2) The cat. of f.d. \mathfrak{g}-modules and $U_{q}(\mathfrak{g})$-modules are semisimple.

Minimal affinization

\mathfrak{g} : simple Lie algebra of rank n,
$\mathcal{L} \mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]:$ loop algebra, $\quad([x \otimes f, y \otimes g]=[x, y] \otimes f g)$
$U_{q}(\mathcal{L} \mathfrak{g})$: quantum loop algebra $/ \mathbb{C}(q)(q$-analog of $U(\mathcal{L g}))$
$U_{q}(\mathfrak{g})$: quantum group assoc. with $\mathfrak{g}(q$-analog of $U(\mathfrak{g}))$
(Note: $\left.\mathfrak{g}=\mathfrak{g} \otimes 1 \subseteq \mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]=\mathcal{L} \mathfrak{g}\right)$

Fact

(1) $\{$ f.d. simple \mathfrak{g}-mod. $\} \stackrel{1: 1}{\longleftrightarrow} P^{+} \stackrel{1: 1}{\longleftrightarrow}$ \{f.d. simple $U_{q}(\mathfrak{g})$-mod $\}$

$$
\begin{array}{ccc}
ש & ש & U \\
V(\lambda) & \lambda & V_{q}(\lambda)
\end{array}
$$

(2) The cat. of f.d. \mathfrak{g}-modules and $U_{q}(\mathfrak{g})$-modules are semisimple.
(3) $\operatorname{ch} V(\lambda)=\operatorname{ch} V_{q}(\lambda)$.

Minimal affinization

Fact. V : an arbitrary f.d. simple $U_{q}(\mathcal{L g})$-module $\rightsquigarrow \exists!\lambda \in P^{+}$s.t. $V \cong V_{q}(\lambda) \oplus \bigoplus_{\mu<\lambda} V_{q}(\mu)^{\oplus m_{\mu}(V)}$ as a $U_{q}(\mathfrak{g})$-module. In this case, V is called an affinization of $V_{q}(\lambda)$.

$$
\begin{aligned}
& \left\{U_{q}(\mathfrak{g}) \text {-isom. classes of affiniz. of } V_{q}(\lambda)\right\} \Leftarrow \text { partial order is defined } \\
& \left([V] \geq[W] \Leftrightarrow\left\{m_{\mu}(V)\right\}_{\mu} \geq\left\{m_{\mu}(W)\right\}_{\mu} \text { w.r.t. lexicographic order }\right)
\end{aligned}
$$

Definition

minimal affinization of $V_{q}(\lambda)$
$\stackrel{\text { def }}{\Leftrightarrow} \circ V$ is an affinization of $V_{q}(\lambda)$

- the isom. class of V is minimal among affiniz. of $V_{q}(\lambda)$.

Minimal affinization

Fact. V : an arbitrary f.d. simple $U_{q}(\mathcal{L g})$-module
$\rightsquigarrow \exists!\lambda \in P^{+}$s.t. $V \cong V_{q}(\lambda) \oplus \bigoplus_{\mu<\lambda} V_{q}(\mu)^{\oplus m_{\mu}(V)}$ as a $U_{q}(\mathfrak{g})$-module.
In this case, V is called an affinization of $V_{q}(\lambda)$.
$\left\{U_{q}(\mathfrak{g})\right.$-isom. classes of affiniz. of $\left.V_{q}(\lambda)\right\} \Leftarrow$ partial order is defined $\left([V] \geq[W] \Leftrightarrow\left\{m_{\mu}(V)\right\}_{\mu} \geq\left\{m_{\mu}(W)\right\}_{\mu}\right.$ w.r.t. lexicographic order $)$

Definition

minimal affinization of $V_{q}(\lambda)$
$\stackrel{\text { def }}{\Leftrightarrow} \circ V$ is an affinization of $V_{q}(\lambda)$

- the isom. class of V is minimal among affiniz. of $V_{q}(\lambda)$.

Minimal affinization

Fact. V : an arbitrary f.d. simple $U_{q}(\mathcal{L g})$-module
$\rightsquigarrow \exists!\lambda \in P^{+}$s.t. $V \cong V_{q}(\lambda) \oplus \bigoplus_{\mu<\lambda} V_{q}(\mu)^{\oplus m_{\mu}(V)}$ as a $U_{q}(\mathfrak{g})$-module.
In this case, V is called an affinization of $V_{q}(\lambda)$.
$\left\{U_{q}(\mathfrak{g})\right.$-isom. classes of affiniz. of $\left.V_{q}(\lambda)\right\} \Leftarrow$ partial order is defined $\left([V] \geq[W] \Leftrightarrow\left\{m_{\mu}(V)\right\}_{\mu} \geq\left\{m_{\mu}(W)\right\}_{\mu}\right.$ w.r.t. lexicographic order)

Definition

V : minimal affinization of $V_{q}(\lambda)$
$\stackrel{\text { def }}{\Leftrightarrow} \circ V$ is an affinization of $V_{q}(\lambda)$

- the isom. class of V is minimal among affiniz. of $V_{q}(\lambda)$.

Examples of Minimal affinizations

Minimal affinizations for $\mathfrak{g}=\mathfrak{s l}_{n+1}$
When $\mathfrak{g}=\mathfrak{s l}_{n+1},{ }^{\exists}$ alg. hom. $\varphi: U_{q}(\mathcal{L g}) \rightarrow U_{q}(\mathfrak{g})$ (evaluation map) $\left(q\right.$-analog of the map $\mathcal{L} \mathfrak{g} \rightarrow \mathfrak{g}: x \otimes f \rightarrow f(a) x$ for any $\left.a \in \mathbb{C}^{\times}\right)$ $\rightsquigarrow \varphi^{*} V_{q}(\lambda)$: simple $U_{q}(\mathcal{L g})$-mod. \Leftarrow minimal affinization of $V_{q}(\lambda)$ $\left(\because \varphi^{*} V_{q}(\lambda) \cong V_{q}(\lambda)\right.$ as a $U_{q}(\mathfrak{g})$-mod. $)$

Remark. If $\mathfrak{g} \neq \mathfrak{s l}_{n+1}$, evaluation map does not exist. Most of minimal affinizations are reducible as a $U_{q}(\mathfrak{g})$-module, and it is not easy to determine the decompositions.
\square Kirillov-Reshetikhin modules $=$ minimal affinizations of $V_{q}\left(m_{\omega_{i}}\right)$

Examples of Minimal affinizations

Minimal affinizations for $\mathfrak{g}=\mathfrak{s l}_{n+1}$
When $\mathfrak{g}=\mathfrak{s l}_{n+1},{ }^{\exists}$ alg. hom. $\varphi: U_{q}(\mathcal{L} \mathfrak{g}) \rightarrow U_{q}(\mathfrak{g})$ (evaluation map) (q-analog of the map $\mathcal{L} \mathfrak{g} \rightarrow \mathfrak{g}: x \otimes f \rightarrow f(a) x$ for any $a \in \mathbb{C}^{\times}$) $\rightsquigarrow \varphi^{*} V_{q}(\lambda)$: simple $U_{q}(\mathcal{L} \mathfrak{g})$-mod. \Leftarrow minimal affinization of $V_{q}(\lambda)$

$$
\left(\because \varphi^{*} V_{q}(\lambda) \cong V_{q}(\lambda) \text { as a } U_{q}(\mathfrak{g}) \text {-mod. }\right)
$$

Remark. If $\mathfrak{g} \neq \mathfrak{s l}_{n+1}$, evaluation map does not exist.
\rightsquigarrow Most of minimal affinizations are reducible as a $U_{q}(\mathfrak{g})$-module, and it is not easy to determine the decompositions.

Another example Kirillov-Reshetikhin modules $=$ minimal affinizations of $V_{q}\left(m \varpi_{i}\right)$

Examples of Minimal affinizations

Minimal affinizations for $\mathfrak{g}=\mathfrak{s l}_{n+1}$
When $\mathfrak{g}=\mathfrak{s l}_{n+1},{ }^{\exists}$ alg. hom. $\varphi: U_{q}(\mathcal{L} \mathfrak{g}) \rightarrow U_{q}(\mathfrak{g})$ (evaluation map) (q-analog of the map $\mathcal{L} \mathfrak{g} \rightarrow \mathfrak{g}: x \otimes f \rightarrow f(a) x$ for any $a \in \mathbb{C}^{\times}$) $\rightsquigarrow \varphi^{*} V_{q}(\lambda)$: simple $U_{q}(\mathcal{L} \mathfrak{g})$-mod. \Leftarrow minimal affinization of $V_{q}(\lambda)$

$$
\left(\because \varphi^{*} V_{q}(\lambda) \cong V_{q}(\lambda) \text { as a } U_{q}(\mathfrak{g}) \text {-mod. }\right)
$$

Remark. If $\mathfrak{g} \neq \mathfrak{s l}_{n+1}$, evaluation map does not exist.
\rightsquigarrow Most of minimal affinizations are reducible as a $U_{q}(\mathfrak{g})$-module, and it is not easy to determine the decompositions.

Another example
Kirillov-Reshetikhin modules \square

Examples of Minimal affinizations

Minimal affinizations for $\mathfrak{g}=\mathfrak{s l}_{n+1}$
When $\mathfrak{g}=\mathfrak{s l}_{n+1},{ }^{\exists}$ alg. hom. $\varphi: U_{q}(\mathcal{L} \mathfrak{g}) \rightarrow U_{q}(\mathfrak{g})$ (evaluation map) (q-analog of the map $\mathcal{L} \mathfrak{g} \rightarrow \mathfrak{g}: x \otimes f \rightarrow f(a) x$ for any $a \in \mathbb{C}^{\times}$) $\rightsquigarrow \varphi^{*} V_{q}(\lambda)$: simple $U_{q}(\mathcal{L} \mathfrak{g})$-mod. \Leftarrow minimal affinization of $V_{q}(\lambda)$

$$
\left(\because \varphi^{*} V_{q}(\lambda) \cong V_{q}(\lambda) \text { as a } U_{q}(\mathfrak{g}) \text {-mod. }\right)
$$

Remark. If $\mathfrak{g} \neq \mathfrak{s l}_{n+1}$, evaluation map does not exist.
\rightsquigarrow Most of minimal affinizations are reducible as a $U_{q}(\mathfrak{g})$-module, and it is not easy to determine the decompositions.

Another example

Kirillov-Reshetikhin modules $=$ minimal affinizations of $V_{q}\left(m \varpi_{i}\right)$

Main Theorem

In the sequel, assume that \mathfrak{g} is of type $A B C D$.
Let $\lambda \in P^{+}$, and let $L_{q}(\lambda)$ be a minimal affinization of $V_{q}(\lambda)$.

Theorem

Then we have

$$
\operatorname{ch} L_{q}(\lambda)=\operatorname{det}\left(\operatorname{ch} L_{q}\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)
$$

where $\lambda_{i}:=\sum_{k \geq i}\left\langle h_{i}, \lambda\right\rangle \in \mathbb{Z}_{\geq 0}$ for $1 \leq i \leq n$.

Remark. ch $L_{q}\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)$ can be written explicitly.

Main Theorem

In the sequel, assume that \mathfrak{g} is of type $A B C D$.
Let $\lambda \in P^{+}$, and let $L_{q}(\lambda)$ be a minimal affinization of $V_{q}(\lambda)$.

Theorem

Assume that $\begin{cases}\left\langle h_{n}, \lambda\right\rangle=0 & \text { if } \mathfrak{g} \text { : type } B C, \\ \left\langle h_{n-1}, \lambda\right\rangle=\left\langle h_{n}, \lambda\right\rangle=0 & \text { if } \mathfrak{g} \text { : type } D .\end{cases}$
Then we have

$$
\operatorname{ch} L_{q}(\lambda)=\operatorname{det}\left(\operatorname{ch} L_{q}\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}
$$

where $\lambda_{i}:=\sum_{k \geq i}\left\langle h_{i}, \lambda\right\rangle \in \mathbb{Z}_{\geq 0}$ for $1 \leq i \leq n$.

Remark. $\operatorname{ch} L_{q}\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)$ can be written explicitly.

Comments on the theorem

$$
\operatorname{ch} L_{q}(\lambda)=\operatorname{det}\left(\operatorname{ch} L_{q}\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}
$$

1. In type A, this is the JT formula since $\operatorname{ch} L_{q}(\lambda)=\operatorname{ch} V(\lambda)$.
2. In [Nakai-Nakanishi, 06], they have conjectured some formulas for q-characters of $L_{q}(\lambda)(q$-character $\xrightarrow{\text { specialize }}$ character).
In fact the specialization of their formula coincides with $\operatorname{det}\left(\operatorname{ch} L_{q}\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}$.
3. In type B, NN conj. has been proven by [Hernandez, 07].
4. In type $C D$, any closed character formula for minimal affinizations has not been obtained before (except for some special ones such as KR modules).

Comments on the theorem

$$
\operatorname{ch} L_{q}(\lambda)=\operatorname{det}\left(\operatorname{ch} L_{q}\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}
$$

1. In type A, this is the JT formula since $\operatorname{ch} L_{q}(\lambda)=\operatorname{ch} V(\lambda)$.
2. In [Nakai-Nakanishi, 06], they have conjectured some formulas for q-characters of $L_{q}(\lambda)(q$-character $\xrightarrow{\text { specialize }}$ character).
In fact the specialization of their formula coincides with $\operatorname{det}\left(\operatorname{ch} L_{q}\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}$.
3. In type B, NN conj. has been proven by [Hernandez, 07].
4. In type $C D$, any closed character formula for minimal affinizations has not been obtained before (except for some special ones such as KR modules).

Comments on the theorem

$$
\operatorname{ch} L_{q}(\lambda)=\operatorname{det}\left(\operatorname{ch} L_{q}\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}
$$

1. In type A, this is the JT formula since $\operatorname{ch} L_{q}(\lambda)=\operatorname{ch} V(\lambda)$.
2. In [Nakai-Nakanishi, 06], they have conjectured some formulas for q-characters of $L_{q}(\lambda)(q$-character $\xrightarrow{\text { specialize }}$ character).
In fact the specialization of their formula coincides with $\operatorname{det}\left(\operatorname{ch} L_{q}\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}$.
3. In type B, NN conj. has been proven by [Hernandez, 07].
4. In type $C D$, any closed character formula for minimal affinizations has not been obtained before (except for some special ones such as KR modules).

Comments on the theorem

$$
\operatorname{ch} L_{q}(\lambda)=\operatorname{det}\left(\operatorname{ch} L_{q}\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}
$$

1. In type A, this is the JT formula since $\operatorname{ch} L_{q}(\lambda)=\operatorname{ch} V(\lambda)$.
2. In [Nakai-Nakanishi, 06], they have conjectured some formulas for q-characters of $L_{q}(\lambda)(q$-character $\xrightarrow{\text { specialize }}$ character).
In fact the specialization of their formula coincides with $\operatorname{det}\left(\operatorname{ch} L_{q}\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}$.
3. In type B, NN conj. has been proven by [Hernandez, 07].
4. In type $C D$, any closed character formula for minimal affinizations has not been obtained before (except for some special ones such as KR modules).

Sketch of the proof

Graded limits

$L_{q}(\lambda): U_{q}(\mathcal{L g})-\bmod . / \mathbb{C}(q) \xrightarrow{q \rightarrow 1} L_{1}(\lambda): \mathcal{L} \mathfrak{g}-\bmod . / \mathbb{C}($ classical limit) $\xrightarrow{\text { restrict }} L_{1}(\lambda): \mathfrak{g}[t]$-module $\quad\left(\mathfrak{g}[t]=\mathfrak{g} \otimes \mathbb{C}[t] \subseteq \mathcal{L} \mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]\right)$

Fact. ${ }^{\exists} a \in \mathbb{C}^{\times}$s.t. $\left(\mathfrak{g} \otimes(t+a)^{N}\right) L_{1}(\lambda)=0 \quad(N \gg 0)$
\rightsquigarrow Define an auto. τ_{a} on $\mathfrak{g}[t]$ by $\tau_{a}(g \otimes f(t))=g \otimes f(t+a)$
$L(\lambda):=\tau_{a}^{*}\left(L_{1}(\lambda)\right):$ graded limit of $L_{q}(\lambda)(\underline{\mathbb{Z}}$-graded $\mathfrak{g}[t]$-module $)$
Remark. $\operatorname{ch} L_{q}(\lambda)=\operatorname{ch} L(\lambda)$.

Sketch of the proof

$\mathfrak{g}=\mathfrak{n}_{+} \oplus \mathfrak{h} \oplus \mathfrak{n}_{-}:$triangular decomosition,
Define $\Delta_{+}^{\prime}:=\left\{\alpha \in \Delta_{+} \mid \alpha=\sum m_{i} \alpha_{i}, m_{i} \leq 1\right\} \subseteq \Delta_{+}$.

Theorem (N)

Let $M(\lambda)$ be the $\mathfrak{g}[t]$-module generated by a vector v with relations

$$
\begin{aligned}
\mathfrak{n}_{+}[t] v=0, & \left(h \otimes t^{n}\right) v=\delta_{0, n} \lambda(h) v \text { for } h \in \mathfrak{h}, \quad f_{i}^{\lambda\left(h_{i}\right)+1} v=0 \\
& \left(f_{\alpha} \otimes t\right) v=0 \text { for } \alpha \in \Delta_{+}^{\prime} .
\end{aligned}
$$

Then the graded limit $L(\lambda)$ is isomorphic to $M(\lambda)$.

Sketch of the proof

Theorem (Chari-Greenstein, 11)

$$
\begin{aligned}
& \sum_{(\lambda, s) \in\ulcorner(\mu)}(-1)^{s} \operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(V(\lambda), \bigwedge^{s} \mathfrak{g} \otimes V(\mu)\right) \operatorname{ch} M(\lambda)=\operatorname{ch} V(\mu), \\
& \Gamma(\mu)=\left\{(\lambda, s) \mid \mu=\lambda+\sum_{\alpha \notin \Delta_{+}^{\prime}} n_{\alpha} \alpha, \sum n_{\alpha}=s\right\} \subseteq P^{+} \times \mathbb{Z}_{\geq 0} .
\end{aligned}
$$

Theorem (Sam, 14)
Setting $H_{\lambda}=\operatorname{det}\left(\operatorname{ch} L_{q}\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}$,

$$
\sum_{(\lambda, s) \in \Gamma(\mu)}(-1)^{s} \operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(V(\lambda), \bigwedge^{s} \mathfrak{g} \otimes V(\mu)\right) H_{\lambda}=\operatorname{ch} V(\mu) .
$$

$H_{\lambda}=\operatorname{ch} M(\lambda)=\operatorname{ch} L(\lambda)=\operatorname{ch} L_{q}(\lambda)$

Sketch of the proof

Theorem (Chari-Greenstein, 11)

$$
\begin{aligned}
& \sum_{(\lambda, s) \in\ulcorner(\mu)}(-1)^{s} \operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(V(\lambda), \bigwedge \bigwedge^{\circ} \mathfrak{g} \otimes V(\mu)\right) \operatorname{ch} M(\lambda)=\operatorname{ch} V(\mu), \\
& \Gamma(\mu)=\left\{(\lambda, s) \mid \mu=\lambda+\sum_{\alpha \notin \Delta_{+}^{\prime}} n_{\alpha} \alpha, \sum n_{\alpha}=s\right\} \subseteq P^{+} \times \mathbb{Z}_{\geq 0} .
\end{aligned}
$$

Theorem (Sam, 14)
Setting $H_{\lambda}=\operatorname{det}\left(\operatorname{ch} L_{q}\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}$,

$$
\sum_{(\lambda, s) \in \Gamma(\mu)}(-1)^{s} \operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(V(\lambda), \bigwedge^{s} \mathfrak{g} \otimes V(\mu)\right) H_{\lambda}=\operatorname{ch} V(\mu) .
$$

$\therefore H_{\lambda}=\operatorname{ch} M(\lambda)=\operatorname{ch} L(\lambda)=\operatorname{ch} L_{q}(\lambda)$.

