Classical limits of minimal affinizations and generalized Demazure modules

Katsuyuki Naoi
Kavli IPMU
May 22nd, 2012

Abstract

Problem
Study the structures of finite-dimensional simple modules over a quantum loop algebra $\boldsymbol{U}_{\boldsymbol{q}}(\mathbf{L g})$.

Finite dimensional simple modules over $\boldsymbol{U}_{q}(\boldsymbol{L g})$ are auite manv. Hence it seems too ambitious to solve this problem in general (at least for now)

In this talk, we concentrate on some distinguished subclass
(minimal affinizations)

Abstract

Problem

Study the structures of finite-dimensional simple modules over a quantum loop algebra $\boldsymbol{U}_{\boldsymbol{q}}(\mathbf{L g})$.

Finite dimensional simple modules over $\boldsymbol{U}_{\boldsymbol{q}}(\boldsymbol{L} \mathfrak{g})$ are quite many. Hence it seems too ambitious to solve this problem in general (at least for now).

In this talk, we concentrate on some distinguished subclass

Abstract

Problem

Study the structures of finite-dimensional simple modules over a quantum loop algebra $\boldsymbol{U}_{\boldsymbol{q}}(\mathbf{L g})$.

Finite dimensional simple modules over $\boldsymbol{U}_{\boldsymbol{q}}(\boldsymbol{L} \mathfrak{g})$ are quite many. Hence it seems too ambitious to solve this problem in general (at least for now).

In this talk, we concentrate on some distinguished subclass (minimal affinizations).

How to study?
M: Minimal affinization of $U_{q}(\mathrm{Lg})$
$\stackrel{\text { classical limit }}{\Longrightarrow} M_{1}: U(L \mathfrak{g})$-module $\left(\boldsymbol{L g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]\right)$ $\stackrel{\text { n }}{\Longrightarrow}: U(g \otimes \mathbb{C}[t])$-module (Restricted limit)
$\diamond \operatorname{ch} M=\operatorname{ch} \bar{M}$
$\overline{M_{M}}$ is isomorinio to another $U(g \otimes \mathbb{C}[t])$-module (generalized Demazure module)
\Longrightarrow obtain $\operatorname{ch} \bar{M}(\Leftrightarrow \operatorname{ch} M)$

How to study?
\boldsymbol{M} : Minimal affinization of $\boldsymbol{U}_{\boldsymbol{q}}(\boldsymbol{L} \mathfrak{g})$
classical limit

$$
M_{1}: U(L \mathfrak{g}) \text {-module }\left(L \mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]\right)
$$

$\tau_{a}^{*} \circ$ Res
$\stackrel{\tau_{a}}{\Longrightarrow} \quad \overline{\boldsymbol{M}}: U(\mathfrak{g} \otimes \mathbb{C}[t])$-module (Restricted limit)
\bar{M} is isomorphic to another $\boldsymbol{U}(\mathfrak{g} \otimes \mathbb{C}[t])$-module (generalized Demazure module) \Longrightarrow obtain ch $\bar{M}(\Leftrightarrow$ ch $M)$

How to study?
\boldsymbol{M} : Minimal affinization of $\boldsymbol{U}_{\boldsymbol{q}}(\boldsymbol{L} \mathfrak{g})$
classical limit
$\stackrel{(}{\Longrightarrow} M_{1}: U(L \mathfrak{g})$-module $\left(L \mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]\right)$
$\stackrel{\tau_{a}^{*} \circ \text { Res }}{\Longrightarrow} \overline{\boldsymbol{M}}: \boldsymbol{U}(\mathfrak{g} \otimes \mathbb{C}[t])$-module (Restricted limit)
$\diamond \operatorname{ch} M=\operatorname{ch} \bar{M}$
$\overline{\boldsymbol{M}}$ is isomorphic to another $\boldsymbol{U}(\mathfrak{g} \otimes \mathbb{C}[\boldsymbol{t}])$-module (generalized Demazure module)
\Longrightarrow obtain $\operatorname{ch} \overline{\boldsymbol{M}}(\Leftrightarrow \boldsymbol{\operatorname { c h }} \boldsymbol{M})$

finite-dimensional $U_{q}(\mathfrak{g})$-modules

\mathfrak{g} : simple Lie algebra, $\quad I=\{\mathbf{1}, \ldots, \boldsymbol{n}\}$: index set, $\left\{e_{i}, \boldsymbol{h}_{i}, f_{i} \mid i \in I\right\}$: Chevalley generators, relations: $\left[e_{i}, f_{j}\right]=\delta_{i j} \boldsymbol{h}_{i}, \quad\left[\boldsymbol{h}_{i}, \boldsymbol{e}_{j}\right]=\left\langle\boldsymbol{h}_{i}, \alpha_{j}\right\rangle \boldsymbol{e}_{i}, \ldots$, etc.

In particular, we can take a limit $q \rightarrow \mathbf{1}$ (in a suitable sence)
\qquad

finite-dimensional $U_{q}(\mathfrak{g})$-modules

\mathfrak{g} : simple Lie algebra, $\quad \boldsymbol{I}=\{\mathbf{1}, \ldots, \boldsymbol{n}\}$: index set, $\left\{e_{i}, h_{i}, f_{i} \mid i \in I\right\}$: Chevalley generators, relations: $\left[e_{i}, f_{j}\right]=\delta_{i j} h_{i}, \quad\left[h_{i}, e_{j}\right]=\left\langle h_{i}, \alpha_{j}\right\rangle e_{i}, \ldots$, etc.
$\boldsymbol{U}(\mathfrak{g}) \stackrel{q \text {-analog }}{\Longrightarrow}$ quantized enveloping algebra $\boldsymbol{U}_{\boldsymbol{q}}(\mathfrak{g})$
$U_{q}(\mathfrak{g}):=\left\langle e_{i}, k_{i}^{ \pm 1}, f_{i} \mid i \in I\right\rangle(\operatorname{over} \mathbb{C}(\boldsymbol{q}))$ relations: $\left[e_{i}, f_{j}\right]=\delta_{i j} \frac{k_{i}-k_{-i}}{q_{i}-q_{i}^{-1}} \quad\left(q_{i}=q^{d_{i}}, d_{i}=\left(\alpha_{i}, \alpha_{i}\right) / 2\right)$,

$$
k_{i} e_{j} k_{i}^{-1}=q_{i}^{\left\langle h_{i}, \alpha_{j}\right\rangle} e_{j}, \ldots, \text { etc. }\left(k_{i} \approx q_{i}^{h_{i}}\right)
$$

In particular, we can take a limit $\boldsymbol{q} \rightarrow \mathbf{1}$ (in a suitable sence)

$$
U_{q}(\mathfrak{g}) \stackrel{q \rightarrow \mathbf{1}}{\Longrightarrow} U(\mathfrak{g}) \quad \text { (classical limit). }
$$

Moreover, classical limit is also defined on modules:

$$
V_{q}: U_{q}(\mathfrak{g}) \text {-module } \stackrel{q \rightarrow 1}{\Rightarrow} V_{1}: U(\mathbf{g}) \text {-module. }
$$

\boldsymbol{P} : weight lattice of $\boldsymbol{g}, \quad \boldsymbol{P}_{+}:$dominant integral weights.
We say a $\boldsymbol{U}_{\boldsymbol{q}}(\mathfrak{g})$-module \boldsymbol{V} is of type 1 if

$$
V=\bigoplus_{\lambda \in P} V_{\lambda}, \quad V_{\lambda}=\left\{v \in V \mid k_{i} v=q_{i}^{\left\langle h_{i}, \lambda\right\rangle} v\right\}
$$

In this talk, we assume all the $\boldsymbol{U}_{\boldsymbol{q}}(\mathfrak{g})$-modules are of type 1.
Theorem Similarly as \mathfrak{g}-modules, finite-dimensional simple $\boldsymbol{U}_{q}(\mathfrak{g})$-modules (of type $\mathbf{1}$) are parametrized by \boldsymbol{P}_{+}.
\boldsymbol{P} : weight lattice of $\mathfrak{g}, \quad \boldsymbol{P}_{+}:$dominant integral weights.
We say a $\boldsymbol{U}_{\boldsymbol{q}}(\mathbf{g})$-module \boldsymbol{V} is of type 1 if

$$
V=\bigoplus_{\lambda \in P} V_{\lambda}, \quad V_{\lambda}=\left\{v \in V \mid k_{i} v=q_{i}^{\left\langle h_{i}, \lambda\right\rangle} v\right\}
$$

In this talk, we assume all the $\boldsymbol{U}_{q}(\mathfrak{g})$-modules are of type 1.

Theorem

Similarly as \mathfrak{g}-modules, finite-dimensional simple $\boldsymbol{U}_{\boldsymbol{q}}(\mathfrak{g})$-modules (of type 1) are parametrized by \boldsymbol{P}_{+}. Moreover, for each $\lambda \in \boldsymbol{P}_{+}$we have

$$
V_{q}(\lambda): U_{q}(\mathfrak{g}) \text {-module } \stackrel{q \rightarrow 1}{\Longrightarrow} V(\lambda): U(\mathbf{g}) \text {-module. }
$$

In particular, $\operatorname{ch} V_{q}(\lambda)=\operatorname{ch} V(\lambda)$.

finite-dimensional $U_{q}(L \mathfrak{g})$-modules

$L \mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]$: loop algebra
relations: $\left[\boldsymbol{h}_{i} \otimes t^{m}, \boldsymbol{h}_{j} \otimes t^{n}\right]=\mathbf{0}$,

$$
\left[h_{i} \otimes t^{m}, e_{j} \otimes t^{n}\right]=\left\langle h_{i}, \alpha_{j}\right\rangle e_{j} \otimes t^{m+n}, \ldots, \text { etc. }
$$

q-analog
\Longrightarrow quantum loop algebra $\boldsymbol{U}_{q}(\boldsymbol{L g})$
$\boldsymbol{U}_{\boldsymbol{q}}(\boldsymbol{L} \mathfrak{g})=\left\langle\boldsymbol{e}_{i, m}, \boldsymbol{f}_{i, m}, \boldsymbol{k}_{i}^{ \pm 1}, \boldsymbol{h}_{i, m} \mid \boldsymbol{i}, \boldsymbol{m}\right\rangle(\operatorname{over} \mathbb{C}(\boldsymbol{q}))$
relations : $\left[\boldsymbol{h}_{\boldsymbol{i}, \boldsymbol{m}}, \boldsymbol{h}_{\boldsymbol{j}, \boldsymbol{n}}\right]=\mathbf{0}$,

$$
\left[h_{i, m}, e_{j, n}\right]=\frac{q_{i}^{m\left\langle h_{i}, \alpha_{j}\right\rangle}-q_{i}^{-m\left\langle h_{i} \alpha_{j}\right\rangle}}{m\left(q_{i}-q_{i}^{-1}\right)} e_{j, m+n}, \ldots, \text { etc. }
$$

In particular, $\boldsymbol{U}_{q}(\boldsymbol{L} \mathfrak{g}) \stackrel{q \rightarrow 1}{\Rightarrow} \boldsymbol{U}(\boldsymbol{L} \mathfrak{g})$.
$U^{+}:=\left\langle e_{i, m} \mid i, m\right\rangle, U^{0}:=\left\langle h_{i, m}, k_{i}^{ \pm 1} \mid i, m\right\rangle, U^{-}:=\left\langle f_{i, m} \mid i, m\right\rangle$
$\boldsymbol{U}_{\boldsymbol{q}}(\boldsymbol{L} \mathfrak{g})=\boldsymbol{U}^{-} \cdot \boldsymbol{U}^{\mathbf{0}} \cdot \boldsymbol{U}^{+}$: triangular decomposition.
Since $\boldsymbol{U}^{0} \cong \mathbb{C}(\boldsymbol{q})\left[\boldsymbol{h}_{i, m}, \boldsymbol{k}_{i}^{ \pm 1}\right]$, we can define for $\boldsymbol{\Psi} \in\left(\bigoplus_{i, m} \mathbb{C}(\boldsymbol{q}) \boldsymbol{h}_{i, m} \oplus \bigoplus_{i} \mathbb{C}(\boldsymbol{q}) \boldsymbol{k}_{\boldsymbol{i}}\right)^{*}$ a Verma-like module

$$
M_{q}(\Psi)=U_{q}(L \mathfrak{g}) \otimes_{U^{0} \cdot U^{+}} \mathbb{C}(\boldsymbol{q})_{\Psi}
$$

Then $\boldsymbol{M}_{q}(\Psi)$ has a unique simple quotient $\boldsymbol{V}_{q}(\Psi)$.

For $i \in I$, define $\Phi_{i}^{ \pm}(\boldsymbol{u}) \in U^{0}\left[\left[u^{ \pm 1}\right]\right]$ by

$$
\Phi_{i}^{ \pm}(u)=k_{i}^{ \pm} \exp \left(\pm\left(q_{i}-q_{i}^{-1}\right) \Sigma_{m=1}^{\infty} h_{i, m} u^{ \pm m}\right)
$$

Theorem (Chari, Pressley)

$\boldsymbol{V}_{\boldsymbol{q}}(\boldsymbol{\Psi})$ is finite-dimensional if and only if there exists
$\boldsymbol{P}_{\boldsymbol{i}}(\boldsymbol{u}) \in \mathbb{C}(\boldsymbol{q})[\boldsymbol{u}]$ with constant term $\mathbf{1}$ for each $\boldsymbol{i} \in \boldsymbol{I}$ such that

$$
\Psi\left(\Phi_{i}^{+}(u)\right)=q_{i}^{\operatorname{deg}\left(P_{i}\right)} \frac{P_{i}\left(q_{i}^{-1} u\right)}{P_{i}\left(q_{i} u\right)}=\Psi\left(\Phi_{i}^{-}(u)\right)
$$

\{f.d. $\boldsymbol{U}_{\boldsymbol{q}}(\boldsymbol{L} \mathfrak{g})$-mod. $\} \stackrel{1: 1}{\Longleftrightarrow}\left\{\boldsymbol{I}\right.$-tuple of $\mathbb{C}(\boldsymbol{q})$-poly. s.t. $\left.\boldsymbol{P}_{i}(\mathbf{0})=\mathbf{1}\right\}$

$$
V_{q}(P) \Longleftrightarrow P=\left(P_{1}, \ldots, P_{n}\right)
$$

$\boldsymbol{U}_{\boldsymbol{q}}(\boldsymbol{L} \mathfrak{g}) \supseteq \boldsymbol{U}_{\boldsymbol{q}}(\mathfrak{g}) \Rightarrow$ ch \boldsymbol{V} is defined for a $\boldsymbol{U}_{\boldsymbol{q}}(\boldsymbol{L} \mathfrak{g})$-module \boldsymbol{V}. Under mild conditions, we can take
$V_{q}(P) \stackrel{q \rightarrow 1}{\Longrightarrow} V_{1}(P): U(L \mathfrak{g})$-module.
However $V_{1}(P)$ is not necessarily simple, and the structures of $V_{\mathbf{1}}(\boldsymbol{P})$ themselves are not so easy In this talk, we study $V_{\mathbf{1}}(\boldsymbol{P})$ for "minimal affinizations" of type $\boldsymbol{B C D}$. (Type \boldsymbol{A} is trivial as explained later).
$\boldsymbol{U}_{q}(\boldsymbol{L} \mathbf{g}) \supseteq \boldsymbol{U}_{q}(\mathfrak{g}) \Rightarrow$ ch \boldsymbol{V} is defined for a $\boldsymbol{U}_{\boldsymbol{q}}(\boldsymbol{L} \mathfrak{g})$-module \boldsymbol{V}. Under mild conditions, we can take
$V_{q}(P) \stackrel{q \rightarrow 1}{\Longrightarrow} V_{\mathbf{1}}(P): U(L \mathfrak{g})$-module.
However $V_{\mathbf{1}}(\boldsymbol{P})$ is not necessarily simple, and the structures of $V_{\mathbf{1}}(P)$ themselves are not so easy to understand.

In this talk, we study $V_{1}(P)$ for "minimal affinizations" of type $\boldsymbol{B C D}$. (Type \boldsymbol{A} is trivial as explained later).
$\boldsymbol{U}_{\boldsymbol{q}}(\boldsymbol{L} \mathfrak{g}) \supseteq \boldsymbol{U}_{q}(\mathfrak{g}) \Rightarrow$ ch \boldsymbol{V} is defined for a $\boldsymbol{U}_{\boldsymbol{q}}(\boldsymbol{L} \mathfrak{g})$-module \boldsymbol{V}. Under mild conditions, we can take
$V_{q}(P) \stackrel{q \rightarrow 1}{\Longrightarrow} V_{1}(P): U(L \mathfrak{g})$-module.
However $V_{\mathbf{1}}(P)$ is not necessarily simple, and the structures of $V_{\mathbf{1}}(P)$ themselves are not so easy to understand.

In this talk, we study $V_{\mathbf{1}}(\boldsymbol{P})$ for "minimal affinizations" of type $\boldsymbol{B C D}$. (Type \boldsymbol{A} is trivial as explained later).

Definition of minimal affinization

$V_{q}(\lambda)$: simple $\boldsymbol{U}_{q}(\mathbf{g})$-module corresponding to $\lambda \in \boldsymbol{P}_{+}$.

Definition

$\boldsymbol{U}_{q}(\mathbf{L g})$-module \boldsymbol{V} is an affinization of $\boldsymbol{V}_{q}(\boldsymbol{\lambda})$
$\stackrel{\text { def }}{\Leftrightarrow} V \cong V_{q}(\lambda) \oplus \bigoplus_{\mu<\lambda} V_{q}(\mu)^{\oplus s_{\mu}}$ as a $\boldsymbol{U}_{q}(\mathbf{g})$-module.
For $\lambda=\sum_{i \in I} \boldsymbol{m}_{i} \varpi_{i} \in \boldsymbol{P}_{+}$,

$$
\mathcal{P}^{\lambda}:=\left\{P=\left(P_{1}, \ldots, P_{n}\right) \mid P_{i}(0)=1, \operatorname{deg} P_{i}=m_{i}\right\} .
$$

Fact: $P \in \mathcal{P}^{\lambda} \Leftrightarrow V_{q}(P)$ is an affinization of $V_{q}(\lambda)$.

Definition of minimal affinization

$\boldsymbol{V}_{\boldsymbol{q}}(\lambda)$: simple $\boldsymbol{U}_{\boldsymbol{q}}(\mathfrak{g})$-module corresponding to $\lambda \in \boldsymbol{P}_{+}$.

Definition

$\boldsymbol{U}_{\boldsymbol{q}}(\boldsymbol{L} \mathbf{g})$-module V is an affinization of $\boldsymbol{V}_{\boldsymbol{q}}(\lambda)$
$\stackrel{\text { def }}{\Leftrightarrow} V \cong V_{q}(\lambda) \oplus \bigoplus_{\mu<\lambda} V_{q}(\mu)^{\oplus s_{\mu}}$ as a $\boldsymbol{U}_{\boldsymbol{q}}(\mathfrak{g})$-module.
For $\lambda=\sum_{i \in I} \boldsymbol{m}_{i} \varpi_{i} \in \boldsymbol{P}_{+}$,

$$
\mathcal{P}^{\lambda}:=\left\{P=\left(P_{1}, \ldots, P_{n}\right) \mid P_{i}(0)=1, \operatorname{deg} P_{i}=m_{i}\right\}
$$

Fact: $P \in \mathcal{P}^{\lambda} \Leftrightarrow V_{q}(P)$ is an affinization of $V_{\boldsymbol{q}}(\lambda)$.
$V_{q}(P)$ is a minimal affinization
\Leftrightarrow The part $\bigoplus_{\mu<\lambda} V_{q}(\mu)^{\oplus s_{\mu}}$ is "minimal".

Definition (Chari)

(i) Two affinizations $\boldsymbol{V}, \boldsymbol{W}$ of $\boldsymbol{V}_{\boldsymbol{q}}(\boldsymbol{\lambda})$ are equivalent
$\stackrel{\text { def }}{\Longleftrightarrow} V \cong W$ as $U_{q}(\mathbf{g})$-modules.
([V]: equivalent class of V)

Define a partial order on equivalent classes as follows. Assume

then $\mu<{ }^{\exists} v<\lambda$ such that $s_{v}(\boldsymbol{V})<s_{v}(\boldsymbol{W})$ V is minimal affinization for λ

Definition (Chari)

(i) Two affinizations $\boldsymbol{V}, \boldsymbol{W}$ of $\boldsymbol{V}_{\boldsymbol{q}}(\boldsymbol{\lambda})$ are equivalent
$\stackrel{\text { def }}{\Longleftrightarrow} \boldsymbol{V} \cong \boldsymbol{W}$ as $\boldsymbol{U}_{\boldsymbol{q}}(\mathfrak{g})$-modules.
([V]: equivalent class of \boldsymbol{V})
(ii) Define a partial order on equivalent classes as follows: Assume
$V \cong V_{q}(\lambda) \oplus \bigoplus_{\mu<\lambda} V_{q}(\mu)^{\oplus s_{\mu}(V)}, W \cong V_{q}(\lambda) \oplus \bigoplus_{\mu<\lambda} V_{q}(\mu)^{\oplus s_{\mu}(W)}$.
Then $[\boldsymbol{V}] \leq[W] \stackrel{\text { def }}{\Longleftrightarrow}$ If $\boldsymbol{\mu}$ satisfies $s_{\mu}(\boldsymbol{V})>\boldsymbol{s}_{\boldsymbol{\mu}}(\boldsymbol{W})$, then $\mu<{ }^{\exists} v<\lambda$ such that $s_{v}(V)<s_{v}(W)$.

Definition (Chari)

(i) Two affinizations $\boldsymbol{V}, \boldsymbol{W}$ of $\boldsymbol{V}_{\boldsymbol{q}}(\boldsymbol{\lambda})$ are equivalent
$\stackrel{\text { def }}{\Longleftrightarrow} \boldsymbol{V} \cong \boldsymbol{W}$ as $\boldsymbol{U}_{\boldsymbol{q}}(\mathfrak{g})$-modules.
([V]: equivalent class of \boldsymbol{V})
(ii) Define a partial order on equivalent classes as follows: Assume
$V \cong V_{q}(\lambda) \oplus \bigoplus_{\mu<\lambda} V_{q}(\mu)^{\oplus s_{\mu}(V)}, W \cong V_{q}(\lambda) \oplus \bigoplus_{\mu<\lambda} V_{q}(\mu)^{\oplus s_{\mu}(W)}$.
Then $[\boldsymbol{V}] \leq[W] \stackrel{\text { def }}{\Longleftrightarrow}$ If $\boldsymbol{\mu}$ satisfies $s_{\mu}(\boldsymbol{V})>s_{\mu}(\boldsymbol{W})$, then $\mu<{ }^{\exists} v<\lambda$ such that $s_{v}(V)<s_{v}(W)$.
(iii) \boldsymbol{V} is minimal affinization for $\boldsymbol{\lambda}$
$\stackrel{\text { def }}{\Longleftrightarrow}[V]$ is minimal among the affinizations of $V_{q}(\lambda)$.

Minimal affinizations for type \boldsymbol{A}

Assume \mathfrak{g} is of type $\boldsymbol{A}_{\boldsymbol{n}}$.
For any $\boldsymbol{a} \in \mathbb{C}(\boldsymbol{q})^{*},{ }^{\boldsymbol{\exists}}$ an algebra homomorphism

$$
\mathrm{ev}_{a}: \boldsymbol{U}_{\boldsymbol{q}}(\boldsymbol{L} \mathfrak{g}) \rightarrow \boldsymbol{U}_{q}(\mathfrak{g})
$$

which is a \boldsymbol{q}-analog of the following map:

$$
\begin{aligned}
\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right] & \rightarrow \mathfrak{g} \\
x \otimes f & \mapsto f(a) x .
\end{aligned}
$$

$\therefore \operatorname{ev}_{a}^{*}\left(V_{q}(\lambda)\right)$ is the unique minimal affinization for λ (up to equivalence).

In other types ev_{a} does not exist
\Longrightarrow Is minimal affinization unique (up to equivalence)?

Minimal affinizations for type \boldsymbol{A}

Assume \mathfrak{g} is of type $\boldsymbol{A}_{\boldsymbol{n}}$.
For any $\boldsymbol{a} \in \mathbb{C}(\boldsymbol{q})^{*},{ }^{\boldsymbol{\exists}}$ an algebra homomorphism

$$
\mathrm{ev}_{a}: \boldsymbol{U}_{\boldsymbol{q}}(\boldsymbol{L} \mathfrak{g}) \rightarrow \boldsymbol{U}_{q}(\mathfrak{g})
$$

which is a \boldsymbol{q}-analog of the following map:

$$
\begin{aligned}
\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right] & \rightarrow \mathfrak{g} \\
x \otimes f & \mapsto f(a) x .
\end{aligned}
$$

$\therefore \mathrm{ev}_{a}^{*}\left(V_{q}(\lambda)\right)$ is the unique minimal affinization for λ (up to equivalence).

In other types $\mathrm{ev}_{\boldsymbol{a}}$ does not exist
\Rightarrow Is minimal affinization unique (up to equivalence)?

Theorem (Chari, Chari-Pressley)
 \mathfrak{g} : $\boldsymbol{A B C F G}$. For each $\lambda \in \boldsymbol{P}_{+}, \exists$! minimal affinization for λ, and $\boldsymbol{P} \in \mathcal{P}^{\lambda}$ s.t. $\left[V_{q}(P)\right]$ is minimal were explicitly given.

For type $D E$, the situation becomes more complicated
\square
\square
\square \# \{minimal affinizations\} is not uniformly bounded if (i) is not true and $\boldsymbol{m}_{i,}=\mathbf{0}$. (irreaular case)

Theorem (Chari, Chari-Pressley)

$\mathfrak{g}:$ ABCFG. For each $\lambda \in \boldsymbol{P}_{+}$, ヨ!minimal affinization for λ, and $P \in \mathcal{P}^{\lambda}$ s.t. $\left[V_{q}(\boldsymbol{P})\right]$ is minimal were explicitly given.

For type $\boldsymbol{D E}$, the situation becomes more complicated.

Theorem (Chari-Pressley)

$\mathfrak{g}: D E . i_{0} \in I$: trivalent node, $\boldsymbol{J}_{1}, \boldsymbol{J}_{2}, \boldsymbol{J}_{3} \subseteq I$ connected subgraphs such that $I=\bigsqcup_{k=1,2,3} J_{k} \sqcup\left\{i_{0}\right\}$.
For $\lambda=\sum \boldsymbol{m}_{i} \varpi_{i}$,
(i) \exists !minimal affinization if $\boldsymbol{m}_{\boldsymbol{i}}=\mathbf{0}\left(\forall i \in \boldsymbol{J}_{\boldsymbol{k}}\right)$ for some \boldsymbol{k},
(ii) $\#\{$ minimal affinizations $\}=\mathbf{3}$ if (i) is not true and $\boldsymbol{m}_{\boldsymbol{i}_{0}} \neq \mathbf{0}$,
(iii) \#\{minimal affinizations\} is not uniformly bounded if (i) is not true and $\boldsymbol{m}_{i_{0}}=\mathbf{0}$. (irregular case)
For (i) (ii) (regular case), these $P \in \mathcal{P}^{\lambda}$ were explicitly given.

Example: Kirillov-Reshetikhin module

When $\lambda=\boldsymbol{m}_{\boldsymbol{i}}{ }_{i}$, ヨ!minimal affinization for λ.
Let $\boldsymbol{a} \in \mathbb{C}(\boldsymbol{q})^{*}$, and define $\boldsymbol{P}=\left(\boldsymbol{P}_{1}, \ldots, \boldsymbol{P}_{n}\right)$ by

$$
P_{j}= \begin{cases}(1-a u)\left(1-a q_{i}^{2} u\right) \cdots\left(1-a q_{i}^{2(m-1)} u\right) & \text { if } j=i, \\ 1 & \text { if } j \neq i .\end{cases}
$$

$W^{i, m}:=V_{q}(P)$: the unique minimal affinization for λ (Kirillov-Reshetikhin (KR) module)

KR modules have several good properties T-system, Q-system, Fermionic character formula having crystal basis.
\square (cf. extended \boldsymbol{T}-system for \boldsymbol{B}_{n} by Mukhin-Young)

Example：Kirillov－Reshetikhin module

When $\lambda=\boldsymbol{m}_{\boldsymbol{\sigma}}$ ，$⿻ コ 一$ ！minimal affinization for λ ．
Let $\boldsymbol{a} \in \mathbb{C}(\boldsymbol{q})^{*}$ ，and define $\boldsymbol{P}=\left(\boldsymbol{P}_{1}, \ldots, \boldsymbol{P}_{n}\right)$ by

$$
P_{j}= \begin{cases}(1-a u)\left(1-a q_{i}^{2} u\right) \cdots\left(1-a q_{i}^{2(m-1)} u\right) & \text { if } j=i, \\ 1 & \text { if } j \neq i .\end{cases}
$$

$W^{i, m}:=V_{q}(P)$ ：the unique minimal affinization for λ （Kirillov－Reshetikhin（KR）module）
KR modules have several good properties：
（i） \boldsymbol{T}－system， \boldsymbol{Q}－system，
（ii）Fermionic character formula，
（iii）having crystal basis．
Minimal affinizations also have good properties？
（cf．extended \boldsymbol{T}－system for \boldsymbol{B}_{n} by Mukhin－Young）．

Demazure module

$\widehat{\mathfrak{g}}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} \boldsymbol{K} \oplus \mathbb{C} d$: affine Lie algebra,
$\widehat{\mathbf{b}}=\mathfrak{b} \oplus \mathbb{C} \boldsymbol{K} \oplus \mathbb{C} \boldsymbol{d} \oplus \mathfrak{g} \otimes \boldsymbol{t} \mathbb{C}[t]$: Borel subalgebra, $\widehat{\boldsymbol{V}}(\boldsymbol{\Lambda})$: simple highest weight module of $\widehat{\mathfrak{g}}$ with h.w. $\boldsymbol{\Lambda} \in \widehat{\boldsymbol{P}}_{+}$.
is called a Demazure module.

Demazure module

$\widehat{\mathfrak{g}}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} \boldsymbol{K} \oplus \mathbb{C} d$: affine Lie algebra,
$\widehat{\mathbf{b}}=\mathfrak{b} \oplus \mathbb{C} \boldsymbol{K} \oplus \mathbb{C} \boldsymbol{d} \oplus \mathfrak{g} \otimes \boldsymbol{t} \mathbb{C}[t]$: Borel subalgebra, $\widehat{\boldsymbol{V}}(\boldsymbol{\Lambda})$: simple highest weight module of $\widehat{\mathfrak{g}}$ with h.w. $\boldsymbol{\Lambda} \in \widehat{\boldsymbol{P}}_{+}$. Let $\boldsymbol{\xi} \in \widehat{\boldsymbol{P}}$.
There exists a unique $\boldsymbol{\Lambda} \in \widehat{\boldsymbol{P}}_{+}$and $\boldsymbol{w} \in \widehat{\boldsymbol{W}}$ such that $\xi=w(\mathbf{N})$.

Definition
Let $\mathbf{0} \neq \boldsymbol{v}_{\xi} \in \widehat{\boldsymbol{V}}(\boldsymbol{\Lambda})_{\xi}$. The $\widehat{\mathbf{b}}$-submodule

$$
D(\xi):=U(\widehat{\mathfrak{b}}) v_{\xi} \subseteq \widehat{V}(\Lambda)
$$

is called a Demazure module.

character formular for $D(\xi)$

For a $\widehat{\mathbf{g}}$-module $\widehat{\boldsymbol{V}}$ and a $\widehat{\boldsymbol{b}}$-submodule $\boldsymbol{D} \subseteq \widehat{\boldsymbol{V}}$, we set

$$
\left.\mathcal{F}_{i} D:=U \widehat{\mathbf{b}} \oplus \mathbb{C} f_{i}\right) D \quad \text { for } i \in \widehat{I}:=\{0\} \cup I .
$$

In many cases, $\operatorname{ch} \mathcal{F}_{i} \boldsymbol{D}=\mathcal{D}_{i}(\mathbf{c h} \boldsymbol{D})$ follows where

$$
\mathcal{D}_{i}(f):=\frac{f-e^{-\alpha_{i}} s_{i}(f)}{1-e^{-\alpha_{i}}} \quad \text { (Demazure operator). }
$$

Hence if $\xi=w(\boldsymbol{\Lambda})$ and $w=s_{i_{1}} \cdots s_{i_{k}}$ is reduced,

character formular for $D(\xi)$

For a $\widehat{\mathfrak{g}}$-module $\widehat{\boldsymbol{V}}$ and a $\widehat{\boldsymbol{b}}$-submodule $\boldsymbol{D} \subseteq \widehat{\boldsymbol{V}}$, we set

$$
\left.\mathcal{F}_{i} D:=U \widehat{\mathfrak{b}} \oplus \mathbb{C} f_{i}\right) D \quad \text { for } i \in \widehat{I}:=\{0\} \cup I .
$$

In many cases, $\operatorname{ch} \mathcal{F}_{i} \boldsymbol{D}=\mathcal{D}_{i}(\mathbf{c h} \boldsymbol{D})$ follows where

$$
\mathcal{D}_{i}(f):=\frac{f-e^{-\alpha_{i}} s_{i}(f)}{1-e^{-\alpha_{i}}} \quad \text { (Demazure operator). }
$$

If $\boldsymbol{\xi}\left(\boldsymbol{h}_{\boldsymbol{i}}\right) \geq \mathbf{0}$, we have

$$
\left.\mathcal{F}_{i} D(\xi)=U \widehat{\mathfrak{b}} \oplus \mathbb{C} f_{i}\right) v_{\xi}=U(\widehat{\mathfrak{b}}) v_{s_{i} \xi}=D\left(s_{i} \xi\right) .
$$

Hence if $\xi=\boldsymbol{w}(\boldsymbol{\Lambda})$ and $\boldsymbol{w}=s_{i_{1}} \cdots s_{i_{k}}$ is reduced,

$$
\operatorname{ch} D(\xi)=\operatorname{ch} \mathcal{F}_{i_{1}} \cdots \mathcal{F}_{i_{k}} \mathbb{C} v_{\Lambda}=\mathcal{D}_{i_{1}} \cdots \mathcal{D}_{i_{k}}\left(e^{\Lambda}\right) .
$$

Restricted limit

$\boldsymbol{M}:$ Minimal affinization $\left(\boldsymbol{U}_{\boldsymbol{q}}(\boldsymbol{L} \mathbf{g})\right.$-module $)$
classical limit
$\stackrel{M_{1}}{\Longrightarrow}: L \mathfrak{g}\left(=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]\right)$-module
Regard M_{1} as a $\mathfrak{g}[t]:=\mathfrak{g} \otimes \mathbb{C}[t]$-module by restriction.
There exists $a \in \mathbb{C}$ such that

$$
\mathfrak{g} \otimes(t+a)^{N} M_{1}=0 \quad \text { for } N \gg 0
$$

Define $\tau_{a}: \mathfrak{g}[t] \rightarrow \mathfrak{g}[t]$ by $\tau_{a}\left(g \otimes t^{n}\right)=g \otimes(t+a)^{n}$, and

$$
\bar{M}:=\tau_{a}^{*}\left(\boldsymbol{M}_{1}\right) \quad \text { (Restricted limit) }
$$

$\overline{\boldsymbol{M}}$ is a \mathbb{Z}-graded $\mathfrak{g}[t]$-module. We have

$$
\operatorname{ch} M=\operatorname{ch} \bar{M}
$$

KR module case: Motivation of Main result

$\Lambda_{0} \in \widehat{\boldsymbol{P}}_{+}$: fundamental weight of $\widehat{\mathfrak{g}}$,
$\mathfrak{g}=\mathbf{n}_{+} \oplus \mathfrak{l} \oplus \mathbf{n}_{-}, \quad \boldsymbol{w}_{\mathbf{0}} \in W$: longest element,
$t_{i}:=\left(\alpha_{i}, \alpha_{i}\right) / \mathbf{2}$ for $i \in I$ (normalized by (long, long) = 2),
$\bar{W}^{i, m}$: Restricted limit of the KR module $W^{i, m}$.

$$
\begin{gathered}
\bar{W}^{i, m} \text { is a cyclic } \mathfrak{g}[t] \text {-module with defining relations } \\
\begin{array}{c}
\mathfrak{n}_{+}[t] v=0, \quad h \otimes t^{n} v=m \delta_{n 0} \varpi_{i}(h), \quad t^{2} \mathfrak{n}-[t] v= \\
f_{i}^{m+1} v=f_{i} \otimes t v=0, \quad f_{j} v=0(j \neq i) . \\
\bar{W}^{i, m} \cong \boldsymbol{D}\left(m w_{0}\left(\varpi_{i}\right)+\left\lceil m t_{i}\right\rceil \boldsymbol{\Lambda}_{0}\right),
\end{array}
\end{gathered}
$$

where r.h.s extends to a $\mathfrak{g}[t]$-module.

KR module case: Motivation of Main result

$\Lambda_{0} \in \widehat{\boldsymbol{P}}_{+}$: fundamental weight of $\widehat{\mathfrak{g}}$,
$\mathfrak{g}=\mathbf{n}_{+} \oplus \mathfrak{l} \oplus \mathbf{n}_{-}, \quad \boldsymbol{w}_{\mathbf{0}} \in W$: longest element,
$t_{i}:=\left(\alpha_{i}, \alpha_{i}\right) / \mathbf{2}$ for $i \in I$ (normalized by (long, long) = 2),
$\bar{W}^{i, m}$: Restricted limit of the KR module $W^{i, m}$.

Theorem (Chari, Chari-Moura, Di Francesco-Kedem)

(i) $\bar{W}^{i, m}$ is a cyclic $\mathfrak{g}[t]$-module with defining relations

$$
\begin{gathered}
\mathfrak{n}_{+}[t] v=0, \quad h \otimes t^{n} v=m \delta_{n 0} \sigma_{i}(h), \quad t^{2} \mathfrak{n}_{-}[t] v=0, \\
f_{i}^{m+1} v=f_{i} \otimes t v=0, \quad f_{j} v=0(j \neq i) .
\end{gathered}
$$

where r.h.s extends to a $\mathrm{g}[t]$-module.

KR module case: Motivation of Main result

$\Lambda_{0} \in \widehat{\boldsymbol{P}}_{+}$: fundamental weight of $\widehat{\mathbf{g}}$,
$\mathfrak{g}=\mathfrak{n}_{+} \oplus \mathfrak{h} \oplus \mathfrak{n}_{-}, \quad \boldsymbol{w}_{\mathbf{0}} \in \boldsymbol{W}$: longest element,
$t_{i}:=\left(\alpha_{i}, \alpha_{i}\right) / \mathbf{2}$ for $i \in I$ (normalized by (long, long) =2),
$\bar{W}^{i, m}$: Restricted limit of the KR module $W^{i, m}$.

Theorem (Chari, Chari-Moura, Di Francesco-Kedem)

(i) $\bar{W}^{i, m}$ is a cyclic $\mathfrak{g}[t]$-module with defining relations

$$
\begin{gathered}
\mathrm{n}_{+}[t] v=0, \quad h \otimes t^{n} v=m \delta_{n 0} \sigma_{i}(h), \quad t^{2} \mathrm{n}_{-}[t] v=0, \\
f_{i}^{m+1} v=f_{i} \otimes t v=0, \quad f_{j} v=0(j \neq i) .
\end{gathered}
$$

(ii)

$$
\bar{W}^{i, m} \cong D\left(m w_{0}\left(\varpi_{i}\right)+\left\lceil m t_{i}\right\rceil \Lambda_{0}\right),
$$

where r.h.s extends to a $\mathfrak{g}[t]$-module.

Main results

Assume that \boldsymbol{M}_{λ} is a minimal affinization for $\lambda=\sum_{i \in I} \boldsymbol{m}_{i} \sigma_{i}$.

Theorem

(i) When \mathfrak{g} is \boldsymbol{B}_{n} or $\boldsymbol{C}_{n}, \overline{\boldsymbol{M}}_{\lambda}$ is a cyclic $\mathfrak{g}[\boldsymbol{t}]$-module with defining relations

$$
\begin{aligned}
& \qquad \mathfrak{n}_{+}[t] v=0, \quad h \otimes t^{n} v=\delta_{n 0} \lambda(h) v, \quad t^{2} n_{-}[t] v=0, \\
& f_{i}^{m_{i}+1} v=0(i \in I), \quad f_{\alpha} \otimes t v=0\left(\alpha \in \Delta_{+}^{(1)}\right), \\
& \text { where } \Delta_{+}^{(1)}=\left\{\sum_{i \in I} k_{i} \alpha_{i} \mid k_{i} \leq 1\right\} \subseteq \Delta_{+} .
\end{aligned}
$$

$D\left(m_{1} w_{0}\left(\varpi_{1}\right)+\left\lceil m_{1} t_{1}\right\rceil \Lambda_{0}\right) \otimes \cdots \otimes D\left(m_{n} w_{0}\left(\varpi_{n}\right)+\left\lceil m_{n} t_{n}\right\rceil \Lambda_{0}\right)$

Main results

Assume that \boldsymbol{M}_{λ} is a minimal affinization for $\lambda=\sum_{i \in I} \boldsymbol{m}_{i} \sigma_{i}$.

Theorem

(i) When \mathfrak{g} is \boldsymbol{B}_{n} or $\boldsymbol{C}_{n}, \overline{\boldsymbol{M}}_{\lambda}$ is a cyclic $\mathfrak{g}[\boldsymbol{t}]$-module with defining relations

$$
\begin{array}{r}
\mathfrak{n}_{+}[t] v=0, \quad h \otimes t^{n} v=\delta_{n 0} \lambda(h) v, \quad t^{2} \mathrm{n}_{-}[t] v=0, \\
f_{i}^{m_{i}+1} v=0(i \in I), \quad f_{\alpha} \otimes t v=0\left(\alpha \in \Delta_{+}^{(1)}\right),
\end{array}
$$

where $\Delta_{+}^{(1)}=\left\{\sum_{i \in I} k_{i} \alpha_{i} \mid k_{i} \leq 1\right\} \subseteq \Delta_{+}$.
(ii) When \mathfrak{g} is $\boldsymbol{B}_{n}, \overline{\boldsymbol{M}}_{\boldsymbol{A}}$ is isomorphic to the submodule of

$$
D\left(m_{1} w_{0}\left(\varpi_{1}\right)+\left\lceil m_{1} t_{1}\right\rceil \Lambda_{0}\right) \otimes \cdots \otimes D\left(m_{n} w_{0}\left(\varpi_{n}\right)+\left\lceil m_{n} t_{n}\right\rceil \Lambda_{0}\right)
$$

generated by $\boldsymbol{v}_{m_{1} w_{0}\left(\omega_{1}\right)+\left\lceil m_{1} t_{1} \backslash \Lambda_{0}\right.} \otimes \cdots \otimes v_{m_{n} w_{0}\left(\sigma_{1}\right)+\left\lceil m_{n} t_{n}\right\rceil \Lambda_{0}}$.

A similar result of (ii) also holds for $\boldsymbol{C}_{\boldsymbol{n}}$. However, we need to modify the weights of Demazure modules so that the sum of coefficients become even.

\square (They are formulated case by case, and here omit the detail.) For \boldsymbol{B}_{n}, these are conjectured (and partially proved) by [Moura, '10]

A similar result of (ii) also holds for $\boldsymbol{C}_{\boldsymbol{n}}$. However, we need to modify the weights of Demazure modules so that the sum of coefficients become even.

Ex. $n=4, \lambda=8 \sigma_{1}+6 \sigma_{2}+5 \sigma_{3}+5 \varpi_{4}$.
$\overline{\boldsymbol{M}}_{\lambda} \cong$ the submodule of

$$
\begin{aligned}
& D\left(w_{0}\left(7 \varpi_{1}+\varpi_{2}\right)+4 \Lambda_{0}\right) \otimes D\left(w_{0}\left(5 \varpi_{2}+\varpi_{3}\right)+3 \Lambda_{0}\right) \\
& \otimes D\left(4 w_{0}\left(w_{3}\right)+2 \Lambda_{0}\right) \otimes D\left(w_{0}\left(5 \varpi_{4}+\varpi_{1}\right)+6 \Lambda_{0}\right) .
\end{aligned}
$$

When g is D_{n} and \#\{min. aff. $\}=1$ or 3 , similar results hold.

A similar result of (ii) also holds for $\boldsymbol{C}_{\boldsymbol{n}}$. However, we need to modify the weights of Demazure modules so that the sum of coefficients become even.

Ex. $n=4, \lambda=8 \varpi_{1}+\mathbf{6} \varpi_{2}+5 \varpi_{3}+5 \sigma_{4}$.
$\overline{\boldsymbol{M}}_{\lambda} \cong$ the submodule of

$$
\begin{aligned}
& D\left(w_{0}\left(7 \sigma_{1}+\varpi_{2}\right)+4 \Lambda_{0}\right) \otimes D\left(w_{0}\left(5 \sigma_{2}+\varpi_{3}\right)+3 \Lambda_{0}\right) \\
& \otimes D\left(4 w_{0}\left(\varpi_{3}\right)+2 \Lambda_{0}\right) \otimes D\left(w_{0}\left(5 \sigma_{4}+\varpi_{1}\right)+6 \Lambda_{0}\right) .
\end{aligned}
$$

Theorem

When \mathfrak{g} is \boldsymbol{D}_{n} and \#\{min. aff. $\}=\mathbf{1}$ or $\mathbf{3}$, similar results hold.
(They are formulated case by case, and here omit the detail.)
For \boldsymbol{B}_{n}, these are conjectured (and partially proved) by [Moura, '10].

Corollaries

From the theorem, we obtain two corollaries.
First, let us consider the limit $\lambda \rightarrow \infty$ of \bar{M}_{λ}.
Then the relations $f_{i}^{m_{i}+1} v=0$ in (i) vanish, and we have ${ }^{"} \bar{M}_{\lambda} \xrightarrow{\lambda \rightarrow \infty} U\left(\mathrm{n}_{-} \oplus \bigoplus\left(f_{\alpha} \otimes t\right)\right) "$.

This is conjectured in the recent preprint by [Mukhin-Young].

Corollaries

From the theorem, we obtain two corollaries.
First, let us consider the limit $\lambda \rightarrow \infty$ of $\overline{\boldsymbol{M}}_{\lambda}$.
Then the relations $f_{i}^{m_{i}+1} v=0$ in (i) vanish, and we have

$$
" \bar{M}_{\lambda} \xrightarrow{\lambda \rightarrow \infty} U\left(\mathfrak{n}_{-} \oplus \bigoplus_{\alpha \notin \Delta_{+}^{(1)}}\left(f_{\alpha} \otimes t\right)\right) " .
$$

Corollary

When \mathfrak{g} is \boldsymbol{B}_{n} or \boldsymbol{C}_{n}, we have

$$
\lim _{\lambda \rightarrow \infty} e^{-\lambda} \operatorname{ch} \bar{M}_{\lambda}=\prod_{\alpha \in \Lambda_{+}} \frac{1}{1-e^{\alpha}} \cdot \prod_{\alpha \notin \Delta_{+}^{(1)}} \frac{1}{1-e^{\alpha}} .
$$

This is conjectured in the recent preprint by [Mukhin-Young].

For simplicity, assume \mathfrak{g} is \boldsymbol{B}_{n}.
τ : diagram auto. changing the nodes $\mathbf{0}$ and $\mathbf{1}$.
It follows that
the submodule of $D\left(m_{1} w_{0}\left(w_{1}\right)+\left\lceil m_{1} t_{1}\right\rceil \Lambda_{0}\right) \otimes$

$$
\begin{gathered}
\cdots \otimes D\left(m_{n} w_{0}\left(\varpi_{n}\right)+\left\lceil m_{n} t_{n}\right] \Lambda_{0}\right) \\
\cong \mathcal{F}_{w_{0}} \tau^{*} \mathcal{F}_{[1, n-1]}\left(\mathbb { C } _ { m _ { 1 } \Lambda _ { 0 } } \otimes \tau ^ { * } \mathcal { F } _ { [1 , n - 1] } \left(\mathbb{C}_{m_{2} \Lambda_{0}} \otimes\right.\right. \\
\left.\left.\cdots \otimes \tau^{*} \mathcal{F}_{[1, n-1]}\left(\mathbb{C}_{\left[m_{n} / 2\right\rceil \Lambda_{0}+a \Lambda_{m}}\right) \cdots\right)\right)
\end{gathered}
$$

where $\mathcal{F}_{[1, n-1]}:=\mathcal{F}_{1} \mathcal{F}_{2} \cdots \mathcal{F}_{n-1}, \boldsymbol{a}=\mathbf{0}$ if $\boldsymbol{m}_{\boldsymbol{n}}$ is even and $a=\mathbf{1}$ otherwise.

Corollary

$$
\begin{aligned}
\operatorname{ch} \bar{M}_{\lambda}=\mathcal{D}_{w_{0}} & \tau \mathcal{D}_{[1, n-1]}\left(e ^ { m _ { 1 } \Lambda _ { 0 } } \cdot \tau \mathcal { D } _ { [1 , n - 1] } \left(e^{m_{2} \Lambda_{0}}\right.\right. \\
& \left.\left.\cdots \tau \mathcal{D}_{[1, n-1]}\left(e^{\left\lceil m_{n} / 2\right] \Lambda_{0}+a \Lambda_{m}}\right) \cdots\right)\right) .
\end{aligned}
$$

brief sketch of the proof of main theorem

For simplicity, assume \mathfrak{g} is \boldsymbol{B}_{n},
$\boldsymbol{R}(\lambda): \mathfrak{g}[t]$-module in Theorem (i),
$\boldsymbol{T}(\lambda): \mathfrak{g}[t]$-module in Theorem (ii). goal: $R(\lambda) \cong \bar{M}_{\lambda} \cong T(\lambda)$.

oStep 1: Prove $R(\lambda) \rightarrow \bar{M}_{\lambda}$ by checking \bar{M}_{λ} satisfies

the relations of $\boldsymbol{R}(\boldsymbol{\lambda})$.

-Steo 2. Prove $\overline{\boldsymbol{M}} \rightarrow \boldsymbol{T}(\lambda)$ as fol ows:

brief sketch of the proof of main theorem

For simplicity, assume \mathfrak{g} is \boldsymbol{B}_{n},
$\boldsymbol{R}(\lambda): \mathfrak{g}[t]$-module in Theorem (i),
$\boldsymbol{T}(\lambda): \mathfrak{g}[t]$-module in Theorem (ii).
goal: $R(\lambda) \cong \bar{M}_{\lambda} \cong T(\lambda)$.
oStep 1: Prove $\boldsymbol{R}(\lambda) \rightarrow \overline{\boldsymbol{M}}_{\lambda}$ by checking $\overline{\boldsymbol{M}}_{\lambda}$ satisfies the relations of $\boldsymbol{R}(\lambda)$.
-Step 2: Prove $\bar{M}_{\lambda} \rightarrow T(\lambda)$ as follows:

brief sketch of the proof of main theorem

For simplicity, assume \mathfrak{g} is \boldsymbol{B}_{n},
$\boldsymbol{R}(\lambda): \mathfrak{g}[t]$-module in Theorem (i),
$\boldsymbol{T}(\lambda): \mathfrak{g}[t]$-module in Theorem (ii).
goal: $R(\lambda) \cong \bar{M}_{\lambda} \cong T(\lambda)$.
oStep 1: Prove $\boldsymbol{R}(\lambda) \rightarrow \overline{\boldsymbol{M}}_{\lambda}$ by checking $\overline{\boldsymbol{M}}_{\lambda}$ satisfies the relations of $\boldsymbol{R}(\boldsymbol{\lambda})$.
oStep 2: Prove $\overline{\boldsymbol{M}}_{\lambda} \rightarrow \boldsymbol{T}(\lambda)$ as follows:

$$
\begin{aligned}
& \left(W^{1, m_{1}} \otimes \cdots \otimes W^{n, m_{n}}\right)^{*} \xrightarrow{\rightrightarrows} M_{\lambda}^{*} \Rightarrow M_{\lambda} \xrightarrow{\exists} W^{1, m_{1}} \otimes \cdots \otimes W^{n, m_{n}} \\
& \stackrel{q \rightarrow 1}{\Rightarrow} \bar{M}_{\lambda} \xrightarrow{\rightrightarrows} \\
& D\left(m_{1} w_{0}\left(\varpi_{1}\right)+\left\lceil t_{1} m_{1}\right\rceil \Lambda_{0}\right) \otimes \cdots \otimes D\left(m_{n} w_{0}\left(\varpi_{n}\right)+\left\lceil t_{n} m_{n}\right\rceil \Lambda_{0}\right) .
\end{aligned}
$$

-Step 3: Prove $\boldsymbol{T}(\boldsymbol{\lambda}) \rightarrow \boldsymbol{R}(\boldsymbol{\lambda})$.
Recall that

$$
\begin{aligned}
& T(\lambda) \cong \mathcal{F}_{w_{0}} \tau^{*} \mathcal{F}_{[1, n-1]}\left(\mathbb { C } _ { m _ { 1 } \Lambda _ { 0 } } \otimes \tau ^ { * } \mathcal { F } _ { [1 , n - 1] } \left(\mathbb{C}_{m_{2} \Lambda_{0}} \otimes\right.\right. \\
&\left.\cdots \otimes \tau^{*} \mathcal{F}_{[1, n-1]}\left(\mathbb{C}_{\left[m_{n} / 27 \Lambda_{0}+a \Lambda_{m}\right.}\right) \cdots\right) .
\end{aligned}
$$

Using this, determin the defining relations of $\boldsymbol{T}(\boldsymbol{\lambda})$ recursively. From this, $\boldsymbol{T}(\lambda) \rightarrow \boldsymbol{R}(\lambda)$ follows.
-Step 3: Prove $\boldsymbol{T}(\boldsymbol{\lambda}) \rightarrow \boldsymbol{R}(\boldsymbol{\lambda})$.
Recall that

$$
\begin{aligned}
& T(\lambda) \cong \mathcal{F}_{w_{0}} \tau^{*} \mathcal{F}_{[1, n-1]}\left(\mathbb { C } _ { m _ { 1 } \Lambda _ { 0 } } \otimes \tau ^ { * } \mathcal { F } _ { [1 , n - 1] } \left(\mathbb{C}_{m_{2} \Lambda_{0}} \otimes\right.\right. \\
&\left.\cdots \otimes \tau^{*} \mathcal{F}_{[1, n-1]}\left(\mathbb{C}_{\left[m_{n} / 27 \Lambda_{0}+a \Lambda_{m}\right.}\right) \cdots\right) .
\end{aligned}
$$

Using this, determin the defining relations of $\boldsymbol{T}(\lambda)$ recursively. From this, $\boldsymbol{T}(\lambda) \rightarrow \boldsymbol{R}(\lambda)$ follows.

Thank you for your attention!

