Minimal affinizations and their graded limits

Katsuyuki Naoi

Tokyo University of Agriculture and Technology
Repsentation theory and Related Topics @ Irako View Hotel
February 18th, 2015

Introduction

Jacobi-Trudi formula For a partition $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{n}\right)$,

$$
s_{\lambda}(x)=\operatorname{det}\left(h_{\lambda_{i}-i+j}(x)\right)_{1 \leq i, j \leq n} .
$$

$s_{\lambda}(x)$: Schur polynomial, $h_{k}(x)$: complete symm. polynomial.

Translation in the $\mathfrak{s l}_{n+1}$-modules

$$
\begin{aligned}
& \lambda \in P^{+}: \text {dom. int. wt } \rightsquigarrow \lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{n}\right) \text { by } \lambda_{i}=\sum_{k \geq i}\left\langle h_{k}, \lambda\right\rangle \\
& \operatorname{ch} V(\lambda)=s_{\lambda}(x) \text {, ch } V\left(k \varpi_{1}\right)=h_{k}(x) \quad\left(V(\lambda) \text { : simple } \mathfrak{s l}_{n+1} \text {-mod. }\right)
\end{aligned}
$$

Theorem

$$
\operatorname{ch} V(\lambda)=\operatorname{det}\left(\operatorname{ch} V\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)
$$

Introduction

Jacobi-Trudi formula For a partition $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{n}\right)$,

$$
s_{\lambda}(x)=\operatorname{det}\left(h_{\lambda_{i}-i+j}(x)\right)_{1 \leq i, j \leq n} .
$$

$s_{\lambda}(x)$: Schur polynomial, $h_{k}(x)$: complete symm. polynomial.
Translation in the $\mathfrak{s l}_{n+1}$-modules
$\lambda \in P^{+}$: dom. int. wt $\rightsquigarrow \lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{n}\right)$ by $\lambda_{i}=\sum_{k \geq i}\left\langle h_{k}, \lambda\right\rangle$ ch $V(\lambda)=s_{\lambda}(x)$, ch $V\left(k \varpi_{1}\right)=h_{k}(x) \quad\left(V(\lambda):\right.$ simple $\left.\mathfrak{s l}_{n+1}-\bmod .\right)$

Introduction

Jacobi-Trudi formula For a partition $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{n}\right)$,

$$
s_{\lambda}(x)=\operatorname{det}\left(h_{\lambda_{i}-i+j}(x)\right)_{1 \leq i, j \leq n} .
$$

$s_{\lambda}(x)$: Schur polynomial, $h_{k}(x)$: complete symm. polynomial.
Translation in the $\mathfrak{s l}_{n+1}$-modules
$\lambda \in P^{+}$: dom. int. wt $\rightsquigarrow \lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{n}\right)$ by $\lambda_{i}=\sum_{k \geq i}\left\langle h_{k}, \lambda\right\rangle$ ch $V(\lambda)=s_{\lambda}(x)$, ch $V\left(k \varpi_{1}\right)=h_{k}(x) \quad\left(V(\lambda)\right.$: simple $\left.\mathfrak{s l}_{n+1}-\bmod .\right)$

Theorem

$$
\operatorname{ch} V(\lambda)=\operatorname{det}\left(\operatorname{ch} V\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}
$$

So ch $V(\lambda)=\operatorname{det}\left(\operatorname{ch} V\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}$ holds in type A.
Q. Does this formula hold in other types?

when $\mathfrak{g} \neq \mathfrak{s l}_{n+1}$ (though there may be several generalizations.)

have some representation theoretic meaning? Yes!

So ch $V(\lambda)=\operatorname{det}\left(\operatorname{ch} V\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}$ holds in type A.
Q. Does this formula hold in other types? No!

$$
\operatorname{ch} V(\lambda) \neq \operatorname{det}\left(\operatorname{ch} V\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n},
$$

when $\mathfrak{g} \neq \mathfrak{s l}_{n+1}$ (though there may be several generalizations.)

have some representation theoretic meaning? Yes!

So ch $V(\lambda)=\operatorname{det}\left(\operatorname{ch} V\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}$ holds in type A.
Q. Does this formula hold in other types? No!

$$
\operatorname{ch} V(\lambda) \neq \operatorname{det}\left(\operatorname{ch} V\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}
$$

when $\mathfrak{g} \neq \mathfrak{s l}_{n+1}$ (though there may be several generalizations.)
Q. When $\mathfrak{g} \neq \mathfrak{s l}_{n+1}$, does $\operatorname{det}\left(\operatorname{ch} V\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}$ have some representation theoretic meaning?

So ch $V(\lambda)=\operatorname{det}\left(\operatorname{ch} V\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}$ holds in type A.
Q. Does this formula hold in other types? No!

$$
\operatorname{ch} V(\lambda) \neq \operatorname{det}\left(\operatorname{ch} V\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}
$$

when $\mathfrak{g} \neq \mathfrak{s l}_{n+1}$ (though there may be several generalizations.)
Q. When $\mathfrak{g} \neq \mathfrak{s l}_{n+1}$, does $\operatorname{det}\left(\operatorname{ch} V\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}$ have some representation theoretic meaning? Yes!

In type $B D$, we have

$$
\operatorname{ch} L_{q}(\lambda)=\operatorname{det}\left(\operatorname{ch} V\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n},
$$

where $L_{q}(\lambda)$ denotes a minimal affinization (a special class of f.d. simple $U_{q}(\mathcal{L g})$-modules explained later).

In type C, a similar formula holds:

In type $B D$, we have

$$
\operatorname{ch} L_{q}(\lambda)=\operatorname{det}\left(\operatorname{ch} V\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n},
$$

where $L_{q}(\lambda)$ denotes a minimal affinization (a special class of
f.d. simple $U_{q}(\mathcal{L} \mathfrak{g})$-modules explained later).

In type C, a similar formula holds:

$$
\operatorname{ch} L_{q}(\lambda)=\operatorname{det}\left(\sum_{0 \leq 2 k \leq \lambda_{i}-i+j} \operatorname{ch} V\left(\left(\lambda_{i}-i+j-2 k\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n} .
$$

Plan

1. Definition of minimal affinizations $L_{q}(\lambda)$
2. Main Theorem (JT formula for $\operatorname{ch} L_{q}(\lambda)$)
3. Proof (Combination of results proved by
[N], [Chari-Greenstein], [Sam])
In the proof, graded limits (\mathbb{Z}-graded $\mathfrak{g} \otimes \mathbb{C}[t]$-modules) are used.

Plan

1. Definition of minimal affinizations $L_{q}(\lambda)$
2. Main Theorem (JT formula for $\operatorname{ch} L_{q}(\lambda)$)
3. Proof (Combination of results proved by
[N], [Chari-Greenstein], [Sam])
In the proof, graded limits (\mathbb{Z}-graded $\mathfrak{g} \otimes \mathbb{C}[t]$-modules) are used.

Plan

1. Definition of minimal affinizations $L_{q}(\lambda)$
2. Main Theorem (JT formula for $\operatorname{ch} L_{q}(\lambda)$)
3. Proof (Combination of results proved by
[N], [Chari-Greenstein], [Sam])
In the proof, graded limits (\mathbb{Z}-graded $\mathfrak{g} \otimes \mathbb{C}[t]$-modules) are used.

Minimal affinization

\mathfrak{g} : simple Lie algebra of rank n,
$\mathcal{L} \mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]:$ loop algebra, $\quad([x \otimes f, y \otimes g]=[x, y] \otimes f g)$
$U_{q}(\mathcal{L g})$: quantum loop algebra $/ \mathbb{C}(q)$ (q-analog of $\left.U(\mathcal{L g})\right)$ \cup
$U_{q}(\mathfrak{g})$: quantum group assoc. with $\mathfrak{g}(q$-analog of $U(\mathfrak{g}))$

Minimal affinization

\mathfrak{g} : simple Lie algebra of rank n,
$\mathcal{L} \mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]:$ loop algebra, $\quad([x \otimes f, y \otimes g]=[x, y] \otimes f g)$
$U_{q}(\mathcal{L g})$: quantum loop algebra $/ \mathbb{C}(q)(q$-analog of $U(\mathcal{L g}))$ \cup
$U_{q}(\mathfrak{g})$: quantum group assoc. with $\mathfrak{g}(q$-analog of $U(\mathfrak{g}))$

Minimal affinization

\mathfrak{g} : simple Lie algebra of rank n,
$\mathcal{L} \mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]:$ loop algebra, $\quad([x \otimes f, y \otimes g]=[x, y] \otimes f g)$
$U_{q}(\mathcal{L g})$: quantum loop algebra $/ \mathbb{C}(q)$ (q-analog of $\left.U(\mathcal{L g})\right)$ \cup
$U_{q}(\mathfrak{g})$: quantum group assoc. with $\mathfrak{g}(q$-analog of $U(\mathfrak{g}))$

Minimal affinization

\mathfrak{g} : simple Lie algebra of rank n,
$\mathcal{L} \mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]:$ loop algebra, $\quad([x \otimes f, y \otimes g]=[x, y] \otimes f g)$
$U_{q}(\mathcal{L g})$: quantum loop algebra $/ \mathbb{C}(q)$ (q-analog of $\left.U(\mathcal{L g})\right)$ \cup
$U_{q}(\mathfrak{g})$: quantum group assoc. with $\mathfrak{g}(q$-analog of $U(\mathfrak{g}))$

Minimal affinization

\mathfrak{g} : simple Lie algebra of rank n,
$\mathcal{L} \mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]:$ loop algebra, $\quad([x \otimes f, y \otimes g]=[x, y] \otimes f g)$
$U_{q}(\mathcal{L g})$: quantum loop algebra $/ \mathbb{C}(q)$ (q-analog of $U(\mathcal{L} \mathfrak{g})$)
\cup
$U_{q}(\mathfrak{g})$: quantum group assoc. with $\mathfrak{g}(q$-analog of $U(\mathfrak{g}))$

Fact (f.d. $U_{q}(\mathfrak{g})$-modules)

(1) $\{$ f.d. simple \mathfrak{g}-mod. $\} \stackrel{1: 1}{\longleftrightarrow} P^{+} \stackrel{1: 1}{\longleftrightarrow}$ \{f.d. simple $U_{q}(\mathfrak{g})$-mod $\}$

$$
\begin{array}{ccc}
ש & ש & U \\
V(\lambda) & \lambda & V_{q}(\lambda)
\end{array}
$$

(2) The cat. of f.d. \mathfrak{g}-modules and $U_{q}(\mathfrak{g})$-modules are semisimple.
(3) $\operatorname{ch} V(\lambda)=\operatorname{ch} V_{q}(\lambda)$.

Minimal affinization

Fact. V : an arbitrary f.d. simple $U_{q}(\mathcal{L g})$-module
$\rightsquigarrow ~ \exists!\lambda \in P^{+}$s.t. $V \cong V_{q}(\lambda) \oplus \bigoplus_{\mu<\lambda} V_{q}(\mu)^{\oplus m_{\mu}(V)}$ as a $U_{q}(\mathfrak{g})$-module.
In this case, V is called an affinization of $V_{q}(\lambda)$.
$\left\{U_{q}(g)\right.$-isom. classes of affiniz. of $\left.V_{q}(\lambda)\right\}$

Minimal affinization

Fact. V : an arbitrary f.d. simple $U_{q}(\mathcal{L} \mathfrak{g})$-module
$\rightsquigarrow^{\exists!} \lambda \in P^{+}$s.t. $V \cong V_{q}(\lambda) \oplus \bigoplus_{\mu<\lambda} V_{q}(\mu)^{\oplus m_{\mu}(V)}$ as a $U_{q}(\mathfrak{g})$-module.
In this case, V is called an affinization of $V_{q}(\lambda)$.
$\left\{U_{q}(\mathfrak{g})\right.$-isom. classes of affiniz. of $\left.V_{q}(\lambda)\right\}$
partial order is defined $\left([V] \geq[W] \Leftrightarrow\left\{m_{\mu}(V)\right\}_{\mu} \geq\left\{m_{\mu}(W)\right\}_{\mu}\right.$ w.r.t. lexicographic order)

Minimal affinization

Fact. V : an arbitrary f.d. simple $U_{q}(\mathcal{L} \mathfrak{g})$-module
$\rightsquigarrow ~ \exists!\lambda \in P^{+}$s.t. $V \cong V_{q}(\lambda) \oplus \bigoplus_{\mu<\lambda} V_{q}(\mu)^{\oplus m_{\mu}(V)}$ as a $U_{q}(\mathfrak{g})$-module. In this case, V is called an affinization of $V_{q}(\lambda)$.
$\left\{U_{q}(\mathfrak{g})\right.$-isom. classes of affiniz. of $\left.V_{q}(\lambda)\right\} \Leftarrow$ partial order is defined $\left([V] \geq[W] \Leftrightarrow\left\{m_{\mu}(V)\right\}_{\mu} \geq\left\{m_{\mu}(W)\right\}_{\mu}\right.$ w.r.t. lexicographic order $)$
minimal affinization of $V_{q}(\lambda)$
$\stackrel{\text { def }}{\Leftrightarrow} \circ V$ is an affinization of $V_{q}(\lambda)$

- the isom. class of V is minimal among affiniz. of $V_{q}(\lambda)$.

Minimal affinization

Fact. V : an arbitrary f.d. simple $U_{q}(\mathcal{L g})$-module
$\rightsquigarrow \exists!\lambda \in P^{+}$s.t. $V \cong V_{q}(\lambda) \oplus \bigoplus_{\mu<\lambda} V_{q}(\mu)^{\oplus m_{\mu}(V)}$ as a $U_{q}(\mathfrak{g})$-module. In this case, V is called an affinization of $V_{q}(\lambda)$.
$\left\{U_{q}(\mathfrak{g})\right.$-isom. classes of affiniz. of $\left.V_{q}(\lambda)\right\} \Leftarrow$ partial order is defined $\left([V] \geq[W] \Leftrightarrow\left\{m_{\mu}(V)\right\}_{\mu} \geq\left\{m_{\mu}(W)\right\}_{\mu}\right.$ w.r.t. lexicographic order)

Definition

V : minimal affinization of $V_{q}(\lambda)$ $\stackrel{\text { def }}{\Leftrightarrow} \circ V$ is an affinization of $V_{q}(\lambda)$

- the isom. class of V is minimal among affiniz. of $V_{q}(\lambda)$.

Examples of Minimal affinizations

Minimal affinizations for $\mathfrak{g}=\mathfrak{s l}_{n+1}$
When $\mathfrak{g}=\mathfrak{s l}_{n+1}$, ${ }^{\exists}$ alg. hom. $\varphi: U_{q}(\mathcal{L} \mathfrak{g}) \rightarrow U_{q}(\mathfrak{g})$ (evaluation map) (q-analog of the map $\mathcal{L} \mathfrak{g} \rightarrow \mathfrak{g}: x \otimes f \rightarrow f(a) x$ for any $a \in \mathbb{C}^{\times}$) $\rightsquigarrow \varphi^{*} V_{q}(\lambda)$: simple $U_{q}(\mathcal{L g})$-mod.

Remark. If $\mathfrak{g} \neq \mathfrak{s l}_{n+1}$, evaluation map does not exist. Most of minimal affinizations are reducible as a $U_{q}(\mathfrak{g})$-module, and it is not easy to determine the decompositions or characters.

Another example

Kirillov-Reshetikhin modules $=$ minimal affinizations of $V_{q}\left(m \omega_{i}\right)$

Examples of Minimal affinizations

Minimal affinizations for $\mathfrak{g}=\mathfrak{s l}_{n+1}$

When $\mathfrak{g}=\mathfrak{s l}_{n+1}$, ${ }^{\exists}$ alg. hom. $\varphi: U_{q}(\mathcal{L g}) \rightarrow U_{q}(\mathfrak{g})$ (evaluation map) (q-analog of the map $\mathcal{L g} \rightarrow \mathfrak{g}: x \otimes f \rightarrow f(a) x$ for any $a \in \mathbb{C}^{\times}$) $\rightsquigarrow \varphi^{*} V_{q}(\lambda)$: simple $U_{q}(\mathcal{L} \mathfrak{g})$-mod. \Leftarrow minimal affinization of $V_{q}(\lambda)$

$$
\left(\because \varphi^{*} V_{q}(\lambda) \cong V_{q}(\lambda) \text { as a } U_{q}(\mathfrak{g}) \text {-mod. }\right)
$$

Remark. If $\mathfrak{g} \neq \mathfrak{s l}_{n+1}$, evaluation map does not exist. Most of minimal affinizations are reducible as a $U_{q}(\mathfrak{g})$-module, and it is not easy to determine the decompositions or characters.
\square
Another example
Kirillov-Reshetikhin modules $=$ minimal affinizations of $V_{q}\left(m \varpi_{i}\right)$

Examples of Minimal affinizations

Minimal affinizations for $\mathfrak{g}=\mathfrak{s l}_{n+1}$

When $\mathfrak{g}=\mathfrak{s l}_{n+1}$, ${ }^{\exists}$ alg. hom. $\varphi: U_{q}(\mathcal{L} \mathfrak{g}) \rightarrow U_{q}(\mathfrak{g})$ (evaluation map) (q-analog of the map $\mathcal{L g} \rightarrow \mathfrak{g}: x \otimes f \rightarrow f(a) x$ for any $a \in \mathbb{C}^{\times}$) $\rightsquigarrow \varphi^{*} V_{q}(\lambda)$: simple $U_{q}(\mathcal{L} \mathfrak{g})$-mod. \Leftarrow minimal affinization of $V_{q}(\lambda)$

$$
\left(\because \varphi^{*} V_{q}(\lambda) \cong V_{q}(\lambda) \text { as a } U_{q}(\mathfrak{g}) \text {-mod. }\right)
$$

Remark. If $\mathfrak{g} \neq \mathfrak{s l}_{n+1}$, evaluation map does not exist.
\rightsquigarrow Most of minimal affinizations are reducible as a $U_{q}(\mathfrak{g})$-module, and it is not easy to determine the decompositions or characters.
\square Kirillov-Reshetikhin modules $=$ minimal affinizations of $V_{q}\left(\mathrm{~m}_{i}\right)$

Examples of Minimal affinizations

Minimal affinizations for $\mathfrak{g}=\mathfrak{s l}_{n+1}$

When $\mathfrak{g}=\mathfrak{s l}_{n+1}$, ${ }^{\exists}$ alg. hom. $\varphi: U_{q}(\mathcal{L} \mathfrak{g}) \rightarrow U_{q}(\mathfrak{g})$ (evaluation map) (q-analog of the map $\mathcal{L} \mathfrak{g} \rightarrow \mathfrak{g}: x \otimes f \rightarrow f(a) x$ for any $a \in \mathbb{C}^{\times}$) $\rightsquigarrow \varphi^{*} V_{q}(\lambda)$: simple $U_{q}(\mathcal{L} \mathfrak{g})$-mod. \Leftarrow minimal affinization of $V_{q}(\lambda)$

$$
\left(\because \varphi^{*} V_{q}(\lambda) \cong V_{q}(\lambda) \text { as a } U_{q}(\mathfrak{g}) \text {-mod. }\right)
$$

Remark. If $\mathfrak{g} \neq \mathfrak{s l}_{n+1}$, evaluation map does not exist.
\rightsquigarrow Most of minimal affinizations are reducible as a $U_{q}(\mathfrak{g})$-module, and it is not easy to determine the decompositions or characters.

Another example

Kirillov-Reshetikhin modules $=$ minimal affinizations of $V_{q}\left(m \varpi ⿱ 宀_{i}\right)$

Examples of Minimal affinizations

Minimal affinizations for $\mathfrak{g}=\mathfrak{s l}_{n+1}$

When $\mathfrak{g}=\mathfrak{s l}_{n+1}$, ${ }^{\exists}$ alg. hom. $\varphi: U_{q}(\mathcal{L} \mathfrak{g}) \rightarrow U_{q}(\mathfrak{g})$ (evaluation map) (q-analog of the map $\mathcal{L} \mathfrak{g} \rightarrow \mathfrak{g}: x \otimes f \rightarrow f(a) x$ for any $a \in \mathbb{C}^{\times}$) $\rightsquigarrow \varphi^{*} V_{q}(\lambda)$: simple $U_{q}(\mathcal{L} \mathfrak{g})$-mod. \Leftarrow minimal affinization of $V_{q}(\lambda)$

$$
\left(\because \varphi^{*} V_{q}(\lambda) \cong V_{q}(\lambda) \text { as a } U_{q}(\mathfrak{g}) \text {-mod. }\right)
$$

Remark. If $\mathfrak{g} \neq \mathfrak{s l}_{n+1}$, evaluation map does not exist.
\rightsquigarrow Most of minimal affinizations are reducible as a $U_{q}(\mathfrak{g})$-module, and it is not easy to determine the decompositions or characters.

Another example

Kirillov-Reshetikhin modules $=$ minimal affinizations of $V_{q}\left(m \varpi_{i}\right)$

Main Theorem

In the sequel, assume that \mathfrak{g} is of type $A B C D$.
Let $\lambda \in P^{+}$, and let $L_{q}(\lambda)$ be a minimal affinization of $V_{q}(\lambda)$.

Theorem

Remark. In type A, this is JT formula since ch $L_{q}(\lambda)=\operatorname{ch} V(\lambda)$.

Main Theorem

In the sequel, assume that \mathfrak{g} is of type $A B C D$.
Let $\lambda \in P^{+}$, and let $L_{q}(\lambda)$ be a minimal affinization of $V_{q}(\lambda)$.

Theorem

Assume that $\begin{cases}\left\langle h_{n}, \lambda\right\rangle=0 & \text { if } \mathfrak{g} \text { : type } B C, \\ \left\langle h_{n-1}, \lambda\right\rangle=\left\langle h_{n}, \lambda\right\rangle=0 & \text { if } \mathfrak{g} \text { : type } D,\end{cases}$ and set $\lambda_{i}:=\sum_{k \geq i}\left\langle h_{k}, \lambda\right\rangle \in \mathbb{Z}_{\geq 0}$ for $1 \leq i \leq n$. Then we have ch $L_{q}(\lambda)$

$$
= \begin{cases}\operatorname{det}\left(\operatorname{ch} V\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n} & \mathfrak{g}: A B D \\ \operatorname{det}\left(\sum_{0 \leq 2 \ell \leq \lambda_{i}-i+j} \operatorname{ch} V\left(\left(\lambda_{i}-i+j-2 \ell\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n} \mathfrak{g}: C\end{cases}
$$

Remark.

Main Theorem

In the sequel, assume that \mathfrak{g} is of type $A B C D$.
Let $\lambda \in P^{+}$, and let $L_{q}(\lambda)$ be a minimal affinization of $V_{q}(\lambda)$.

Theorem

Assume that $\begin{cases}\left\langle h_{n}, \lambda\right\rangle=0 & \text { if } \mathfrak{g} \text { : type } B C, \\ \left\langle h_{n-1}, \lambda\right\rangle=\left\langle h_{n}, \lambda\right\rangle=0 & \text { if } \mathfrak{g} \text { : type } D,\end{cases}$ and set $\lambda_{i}:=\sum_{k \geq i}\left\langle h_{k}, \lambda\right\rangle \in \mathbb{Z}_{\geq 0}$ for $1 \leq i \leq n$. Then we have ch $L_{q}(\lambda)=\operatorname{ch} V(\lambda)$

$$
= \begin{cases}\operatorname{det}\left(\operatorname{ch} V\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n} & \mathfrak{g}: A B \\ \operatorname{det}\left(\sum_{0 \leq 2 \ell \leq \lambda_{i}-i+j} \operatorname{ch} V\left(\left(\lambda_{i}-i+j-2 \ell\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n} & \mathfrak{g}: C\end{cases}
$$

Remark. In type A, this is JT formula since ch $L_{q}(\lambda)=\operatorname{ch} V(\lambda)$.

Remark. For $k \in \mathbb{Z}_{\geq 0}$, it holds that

$$
L_{q}\left(k \varpi_{1}\right) \cong U_{q(\mathfrak{g})} \begin{cases}V_{q}\left(k \varpi_{1}\right) & \mathfrak{g}: A B D \\ \bigoplus_{0 \leq 2 \ell \leq k} V_{q}\left((k-2 \ell) \varpi_{1}\right) & \mathfrak{g}: C\end{cases}
$$

Hence the theorem can be written in a uniform way as

$$
\operatorname{ch} L_{q}(\lambda)=\operatorname{det}\left(\operatorname{ch} L_{q}\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n} .
$$

The multiplicity formula can be deduced from the theorem.
Corollary
$\lambda \in P^{+}$: as above. For every $\mu \in P^{+}$

Remark. For $k \in \mathbb{Z}_{\geq 0}$, it holds that

$$
L_{q}\left(k \varpi_{1}\right) \cong U_{q(\mathfrak{g})} \begin{cases}V_{q}\left(k \varpi_{1}\right) & \mathfrak{g}: A B D \\ \bigoplus_{0 \leq 2 \ell \leq k} V_{q}\left((k-2 \ell) \varpi_{1}\right) & \mathfrak{g}: C .\end{cases}
$$

Hence the theorem can be written in a uniform way as

$$
\operatorname{ch} L_{q}(\lambda)=\operatorname{det}\left(\operatorname{ch} L_{q}\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}
$$

The multiplicity formula can be deduced from the theorem.

Corollary

$\lambda \in P^{+}$: as above. For every $\mu \in P^{+}$,

$$
\left[L_{q}(\lambda): V_{q}(\mu)\right]_{U_{q}(\mathfrak{g})}= \begin{cases}\sum_{\kappa} c_{2 \kappa, \mu}^{\lambda} & \mathfrak{g}: B D \\ \sum_{\kappa} c_{(2 \kappa)^{\prime}, \mu}^{\lambda} & \mathfrak{g}: C\end{cases}
$$

κ : partitions, $c_{\mu, \nu}^{\lambda}$: Littlewood-Richardson coefficients.

Comments on the theorem

$\operatorname{ch} L_{q}(\lambda)=\left\{\begin{array}{l}\operatorname{det}\left(\operatorname{ch} V\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}: A B D \\ \operatorname{det}\left(\sum_{0 \leq 2 \ell \leq \lambda_{i}-i+j} \operatorname{ch} V\left(\left(\lambda_{i}-i+j-2 \ell\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}: C\end{array}\right.$

1. In [Nakai-Nakanishi, 06], they have conjectured some formulas for q-characters of $L_{q}(\lambda)(q$-character $\xrightarrow{\text { specialize }}$ character). In fact the specialization of their formula coincides with the r.h.s. of the theorem.
2. In type B, NN conj. has been proven by [Hernandez, 07].
3. In type $C D, N N$ conj. is still open and the theorem is a new result.

Comments on the theorem

$\operatorname{ch} L_{q}(\lambda)=\left\{\begin{array}{l}\operatorname{det}\left(\operatorname{ch} V\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}: A B D \\ \operatorname{det}\left(\sum_{0 \leq 2 \ell \leq \lambda_{i}-i+j} \operatorname{ch} V\left(\left(\lambda_{i}-i+j-2 \ell\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}: C\end{array}\right.$

1. In [Nakai-Nakanishi, 06], they have conjectured some formulas for q-characters of $L_{q}(\lambda)(q$-character $\xrightarrow{\text { specialize }}$ character). In fact the specialization of their formula coincides with the r.h.s. of the theorem.
2. In type B, NN conj. has been proven by [Hernandez, 07].
3. In type $C D, \mathrm{NN}$ conj. is still open and the theorem is a new result.

Comments on the theorem

$\operatorname{ch} L_{q}(\lambda)=\left\{\begin{array}{l}\operatorname{det}\left(\operatorname{ch} V\left(\left(\lambda_{i}-i+j\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}: A B D \\ \operatorname{det}\left(\sum_{0 \leq 2 \ell \leq \lambda_{i}-i+j} \operatorname{ch} V\left(\left(\lambda_{i}-i+j-2 \ell\right) \varpi_{1}\right)\right)_{1 \leq i, j \leq n}: C\end{array}\right.$

1. In [Nakai-Nakanishi, 06], they have conjectured some formulas for q-characters of $L_{q}(\lambda)(q$-character $\xrightarrow{\text { specialize }}$ character). In fact the specialization of their formula coincides with the r.h.s. of the theorem.
2. In type B, NN conj. has been proven by [Hernandez, 07].
3. In type $C D, N N$ conj. is still open and the theorem is a new result.

Sketch of the proof

Graded limits

$L_{q}(\lambda): U_{q}(\mathcal{L} \mathfrak{g})$-mod. $/ \mathbb{C}(q) \xrightarrow{q \rightarrow 1} L_{1}(\lambda): \mathcal{L} \mathfrak{g}$-mod. $/ \mathbb{C}$ (classical limit) $\xrightarrow{\text { restrict }} L_{1}(\lambda): \mathfrak{g}[t]$-module $\quad\left(\mathfrak{g}[t]=\mathfrak{g} \otimes \mathbb{C}[t] \subseteq \mathcal{L} \mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]\right)$

Fact. ${ }^{\exists} a \in \mathbb{C}^{\times}$s.t. $\left(g \otimes(t+a)^{N}\right) L_{1}(\lambda)=0 \quad(N \gg 0)$

 \rightsquigarrow Define an auto. τ_{a} on $\mathfrak{g}[t]$ by $\tau_{a}(g \otimes f(t))=g \otimes f(t+a)$ $I(\lambda):=\tau_{a}^{*}\left(I_{1}(\lambda)\right)$: graded limit of $I_{q}(\lambda)(\mathbb{T}$-graded $\mathfrak{g}[t]$-module)
Remark. ch $L_{q}(\lambda)=\operatorname{ch} L(\lambda)$

Sketch of the proof

Graded limits

$L_{q}(\lambda): U_{q}(\mathcal{L} \mathfrak{g})$-mod. $/ \mathbb{C}(q) \xrightarrow{q \rightarrow 1} L_{1}(\lambda): \mathcal{L} \mathfrak{g}$-mod. $/ \mathbb{C}$ (classical limit) $\xrightarrow{\text { restrict }} L_{1}(\lambda): \mathfrak{g}[t]$-module $\quad\left(\mathfrak{g}[t]=\mathfrak{g} \otimes \mathbb{C}[t] \subseteq \mathcal{L} \mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]\right)$

Fact. ${ }^{\exists} a \in \mathbb{C}^{\times}$s.t. $\left(\mathfrak{g} \otimes(t+a)^{N}\right) L_{1}(\lambda)=0 \quad(N \gg 0)$ \rightsquigarrow Define an auto. τ_{a} on $\mathfrak{g}[t]$ by $\tau_{a}(g \otimes f(t))=g \otimes f(t+a)$ $L(\lambda):=\tau_{a}^{*}\left(L_{1}(\lambda)\right):$ graded limit of $L_{q}(\lambda)$ (\mathbb{Z}-graded $\mathfrak{g}[t]$-module) Remark. ch $L_{q}(\lambda)=\operatorname{ch} L(\lambda)$.

Sketch of the proof

Graded limits

$L_{q}(\lambda): U_{q}(\mathcal{L g})$-mod. $/ \mathbb{C}(q) \xrightarrow{q \rightarrow 1} L_{1}(\lambda): \mathcal{L} \mathfrak{g}$-mod. $/ \mathbb{C}$ (classical limit) $\xrightarrow{\text { restrict }} L_{1}(\lambda): \mathfrak{g}[t]$-module $\quad\left(\mathfrak{g}[t]=\mathfrak{g} \otimes \mathbb{C}[t] \subseteq \mathcal{L} \mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]\right)$

Fact. ${ }^{\exists} a \in \mathbb{C}^{\times}$s.t. $\left(\mathfrak{g} \otimes(t+a)^{N}\right) L_{1}(\lambda)=0 \quad(N \gg 0)$ \rightsquigarrow Define an auto. τ_{a} on $\mathfrak{g}[t]$ by $\tau_{a}(g \otimes f(t))=g \otimes f(t+a)$ $L(\lambda):=\tau_{a}^{*}\left(L_{1}(\lambda)\right):$ graded limit of $L_{q}(\lambda)(\underline{\mathbb{Z}}$-graded $\mathfrak{g}[t]$-module) Remark.

Sketch of the proof

Graded limits

$L_{q}(\lambda): U_{q}(\mathcal{L g})$-mod. $/ \mathbb{C}(q) \xrightarrow{q \rightarrow 1} L_{1}(\lambda): \mathcal{L} \mathfrak{g}$-mod. $/ \mathbb{C}$ (classical limit) $\xrightarrow{\text { restrict }} L_{1}(\lambda): \mathfrak{g}[t]$-module $\quad\left(\mathfrak{g}[t]=\mathfrak{g} \otimes \mathbb{C}[t] \subseteq \mathcal{L} \mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]\right)$

Fact. ${ }^{\exists} a \in \mathbb{C}^{\times}$s.t. $\left(\mathfrak{g} \otimes(t+a)^{N}\right) L_{1}(\lambda)=0 \quad(N \gg 0)$ \rightsquigarrow Define an auto. τ_{a} on $\mathfrak{g}[t]$ by $\tau_{a}(g \otimes f(t))=g \otimes f(t+a)$
$L(\lambda):=\tau_{a}^{*}\left(L_{1}(\lambda)\right):$ graded limit of $L_{q}(\lambda)(\underline{\mathbb{Z} \text {-graded } \mathfrak{g}[t] \text {-module }) ~}$
Remark. $\operatorname{ch} L_{q}(\lambda)=\operatorname{ch} L(\lambda)$.
$\mathfrak{g}=\mathfrak{n}_{+} \oplus \mathfrak{h} \oplus \mathfrak{n}_{-}:$triangular decomosition,
Define $\Delta_{+}^{\prime}:=\left\{\alpha \in \Delta_{+} \mid \alpha=\sum m_{i} \alpha_{i}, m_{i} \leq 1\right\} \subseteq \Delta_{+}$.

Proposition (N)

Let $M(\lambda)$ be the $\mathfrak{g}[t]$-module generated by a vector v with relations

$$
\begin{aligned}
\mathfrak{n}_{+}[t] v=0, & \left(h \otimes t^{n}\right) v=\delta_{0, n} \lambda(h) v \text { for } h \in \mathfrak{h}, \quad f_{i}^{\lambda\left(h_{i}\right)+1} v=0, \\
& \left(f_{\alpha} \otimes t\right) v=0 \text { for } \alpha \in \Delta_{+}^{\prime} .
\end{aligned}
$$

Then the graded limit $L(\lambda)$ is isomorphic to $M(\lambda)$.

Proposition (Chari-Greenstein, 11)

$$
\begin{aligned}
& \sum_{(\lambda, s) \in\ulcorner(\mu)}(-1)^{s} \operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(V(\lambda), \bigwedge^{s} \mathfrak{g} \otimes V(\mu)\right) \operatorname{ch} M(\lambda)=\operatorname{ch} V(\mu), \\
& \Gamma(\mu)=\left\{(\lambda, s) \mid \mu=\lambda+\sum_{\alpha \notin \Delta_{+}^{\prime}+} n_{\alpha} \alpha, \sum n_{\alpha}=s\right\} \subseteq P^{+} \times \mathbb{Z}_{\geq 0} .
\end{aligned}
$$

Proposition (Sam, 14)

Setting $H_{\lambda}=$ (r.h.s of the main theorem),

$$
\sum(-1)^{s} \operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(V(\lambda), \bigwedge^{s} \mathfrak{g} \otimes V(\mu)\right) H_{\lambda}=\operatorname{ch} V(\mu) .
$$

$$
H_{\lambda}=\operatorname{ch} M(\lambda)=\operatorname{ch} L(\lambda)=\operatorname{ch} L_{q}(\lambda)
$$

Proposition (Chari-Greenstein, 11)

$$
\begin{gathered}
\sum_{(\lambda, s) \in \Gamma(\mu)}(-1)^{s} \operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(V(\lambda), \bigwedge^{s} \mathfrak{g} \otimes V(\mu)\right) \operatorname{ch} M(\lambda)=\operatorname{ch} V(\mu), \\
\Gamma(\mu)=\left\{(\lambda, s) \mid \mu=\lambda+\sum_{\alpha \notin \Delta_{+}^{\prime}} n_{\alpha} \alpha, \sum n_{\alpha}=s\right\} \subseteq P^{+} \times \mathbb{Z}_{\geq 0} .
\end{gathered}
$$

Proposition (Sam, 14)

Setting $H_{\lambda}=$ (r.h.s of the main theorem),

$$
\sum_{(\lambda, s) \in \Gamma(\mu)}(-1)^{s} \operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(V(\lambda), \bigwedge^{s} \mathfrak{g} \otimes V(\mu)\right) H_{\lambda}=\operatorname{ch} V(\mu)
$$

$H_{\lambda}=\operatorname{ch} M(\lambda)=\operatorname{ch} L(\lambda)=\operatorname{ch} L_{q}(\lambda)$.

Proposition (Chari-Greenstein, 11)

$$
\begin{gathered}
\sum_{(\lambda, s) \in \Gamma(\mu)}(-1)^{s} \operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(V(\lambda), \bigwedge^{s} \mathfrak{g} \otimes V(\mu)\right) \operatorname{ch} M(\lambda)=\operatorname{ch} V(\mu), \\
\Gamma(\mu)=\left\{(\lambda, s) \mid \mu=\lambda+\sum_{\alpha \notin \Delta_{+}^{\prime}} n_{\alpha} \alpha, \sum n_{\alpha}=s\right\} \subseteq P^{+} \times \mathbb{Z}_{\geq 0} .
\end{gathered}
$$

Proposition (Sam, 14)

Setting $H_{\lambda}=$ (r.h.s of the main theorem),

$$
\sum_{(\lambda, s) \in \Gamma(\mu)}(-1)^{s} \operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(V(\lambda), \bigwedge^{s} \mathfrak{g} \otimes V(\mu)\right) H_{\lambda}=\operatorname{ch} V(\mu)
$$

$\therefore H_{\lambda}=\operatorname{ch} M(\lambda)=\operatorname{ch} L(\lambda)=\operatorname{ch} L_{q}(\lambda)$.

Proposition (Chari-Greenstein, 11)

$$
\begin{gathered}
\sum_{(\lambda, s) \in \Gamma(\mu)}(-1)^{s} \operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(V(\lambda), \bigwedge^{s} \mathfrak{g} \otimes V(\mu)\right) \operatorname{ch} M(\lambda)=\operatorname{ch} V(\mu), \\
\Gamma(\mu)=\left\{(\lambda, s) \mid \mu=\lambda+\sum_{\alpha \notin \Delta_{+}^{\prime}} n_{\alpha} \alpha, \sum n_{\alpha}=s\right\} \subseteq P^{+} \times \mathbb{Z}_{\geq 0}
\end{gathered}
$$

Proposition (Sam, 14)

Setting $H_{\lambda}=$ (r.h.s of the main theorem),

$$
\sum_{(\lambda, s) \in \Gamma(\mu)}(-1)^{s} \operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(V(\lambda), \bigwedge^{s} \mathfrak{g} \otimes V(\mu)\right) H_{\lambda}=\operatorname{ch} V(\mu)
$$

$\therefore H_{\lambda}=\operatorname{ch} M(\lambda)=\operatorname{ch} L(\lambda)$

Proposition (Chari-Greenstein, 11)

$$
\begin{gathered}
\sum_{(\lambda, s) \in \Gamma(\mu)}(-1)^{s} \operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(V(\lambda), \bigwedge^{s} \mathfrak{g} \otimes V(\mu)\right) \operatorname{ch} M(\lambda)=\operatorname{ch} V(\mu), \\
\Gamma(\mu)=\left\{(\lambda, s) \mid \mu=\lambda+\sum_{\alpha \notin \Delta_{+}^{\prime}} n_{\alpha} \alpha, \sum n_{\alpha}=s\right\} \subseteq P^{+} \times \mathbb{Z}_{\geq 0} .
\end{gathered}
$$

Proposition (Sam, 14)

Setting $H_{\lambda}=$ (r.h.s of the main theorem),

$$
\sum_{(\lambda, s) \in \Gamma(\mu)}(-1)^{s} \operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(V(\lambda), \bigwedge^{s} \mathfrak{g} \otimes V(\mu)\right) H_{\lambda}=\operatorname{ch} V(\mu)
$$

$\therefore H_{\lambda}=\operatorname{ch} M(\lambda)=\operatorname{ch} L(\lambda)=\operatorname{ch} L_{q}(\lambda)$.

Comment on exceptional types

It would be possible to study minimal affinizations in exceptional types using their graded limits. Indeed, recently we obtain the following

where
$S(k, l)=\left\{\left(a_{1}\right.\right.$

Comment on exceptional types

It would be possible to study minimal affinizations in exceptional types using their graded limits. Indeed, recently we obtain the following polyhedral multiplicity formula for minimal affinizations of type G_{2} :

$$
\begin{aligned}
& L_{q}\left(k \varpi_{1}+I \varpi_{2}\right) \cong U_{q}(\mathfrak{g}) \\
& \quad \bigoplus_{\left(a_{1}, \ldots, a_{5}\right) \in S(k, I)} V_{q}\left(\left(k-a_{1}+a_{3}+a_{4}-a_{5}\right) \varpi_{1}+\left(I-a_{2}-3 a_{3}-3 a_{4}\right) \varpi_{2}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
S(k, I)=\left\{\left(a_{1}, \ldots, a_{5}\right) \in \mathbb{Z}_{\geq 0}^{5} \mid\right. & a_{1} \leq k, a_{1}-a_{3}+a_{5} \leq k \\
& \left.2 a_{2}+3 a_{3}+3 a_{4} \leq I, 2 a_{2}+3 a_{4}+3 a_{5} \leq I\right\}
\end{aligned}
$$

(joint work with Jian-Rong Li in Lanzhou University)

