Optimizing Parameters in the Layered Search Space

Gleidson Pegoretti da Silva', Yen Kaow Ng?, Yiping Yang?, Bilan Zhu', Masaki Nakagawa®

! Tokyo University of Agriculture and Technology, Koganei-shi, 184-8588, Japan
E-mail:50007834304 @st.tuat.ac.jp, {kalngyk,zhubilan,nakagawa} @cc.tuat.ac.jp

2 Toshiba Solutions Corporation Embedded Solutions Division, Japan
E-mail:yiping_yang @msn.com

Abstract: This paper reports optimization efforts on a layered search space method aimed at accelerating the recognition of a large prototype
set. The layered search space method classifies similar prototypes into clusters. Representative prototypes, each for one of these clusters, are then
selected and further classified into higher-level clusters, and so on. In finding a prototype, we first identify the highest-level clusters where the

prototype may be found, then proceed to identify the most likely sub-clusters within these clusters, and so on. Finally, we match the input with

the prototypes in the identified lowest level clusters. Increasing layers will decrease the number of prototypes to be matched, but the precision of

candidate selection will decrease and overhead will increase. Hence there are several parameters that one needs to adjust for the method to perform
optimally. Most importantly, there is an optimal number of layers that accelerates the recognition without compromising the recognition rate. We
used two efficient methods to approximately identify this number. Both the methods show that having two layers achieves this optimality for the

recognition of handwritten Japanese characters.

Key Words: large category set, search space, pivot, candidate selection, character recognition

1. INTRODUCTION

The task of recognizing letters in a very large alphabet such
as Chinese, Japanese and Korean faces problems with not only
the recognition rate but also the recognition speed. Chinese,
Japanese and Korean alphabets have thousands of characters, so
their recognition takes significantly more time than the recog-
nition of say, the Latin alphabet or numerical characters. While
advances in the speed of computers have made the recognition
of these alphabets reasonably fast, we are still very in need of
faster character recognizers. These faster recognizers could be
run on devices with less processing power like mobile phones or
PDAs, or be used in more elaborated applications that demand
better response time. They would also allow us to run multiple
recognizers simultaneously to obtain consensus results which
may be more accurate.

A general method for improving recognition speed is to per-
form a coarse classification (pre-classification or candidate se-
lection) prior to fine classification [1, 2]. The coarse classifi-
cation typically uses simpler classification algorithms or fewer
features in order to achieve better speed than the fine classifica-
tion. We distinguish between methods where the entire candi-
date selection process is performed during the recognition pro-
cess [3, 4, 5, 6], and methods where the prototypes are pre-
organized prior to a search [10, 11]. We call the former dynamic
approaches, and the latter static approaches.

We earlier introduced a static approach called Structuring
Search Space (SSS), which works by pre-clustering prototypes
into clusters and obtaining a representative (called pivot) for
each cluster [7, 8, 9]. When given an input pattern, only up to

a number of clusters where their representatives are close to the
input pattern are selected for further searches. We further ex-
tend SSS, by clustering the clusters’ representatives to realize a
second layer of clusters and cluster representatives. When given
an input pattern, the pattern is first compared with the represen-
tatives of the second layer clusters, where a fixed number of
close enough representatives are then selected and the search is
continued with the clusters they represent. If we further cluster
the representatives of the second layer clusters, we can obtain
a third layer, and so on. We call this a Layered Search Space
(LSS) (see Fig. 1).

While increasing layers will decrease the number of proto-
types to be matched, the precision of candidate selection will
decrease and overhead will increase. In this paper, we use two
distinct techniques to efficiently identify the optimal number of
layers for the current task, with the corresponding numbers of
clusters to create and to select during search, in each layer.

% : Prototype e :Pivot m: Super pivot A: Input pattern

Pivot
j:luster
Upper) -
layer o, #~Input
R : pattern
; ;
o —> Candidate
L |
Base S :cl4usters
layer e x

Figure 1: Conceptual figure of the LSS

2 LSS SYSTEM DESCRIPTION

As a character recognizer we use a two-stage recognizer
(coarse and fine). for handwritten Japanese characters [12]. The
recognizer represents each scanned image of a character pattern
as a 256-dimensional feature vector. It scales every input pat-
tern to a 64x64 grid by non-linear normalization. Then, it de-
composes the normalized image into 4 contour patterns repre-
senting directional features of the 4 main orientations. Finally,
it extracts a 64-dimensional feature vector for each contour pat-
tern from the convolution with a blurring mask (Gaussian filter).

The coarse classification selects 40 candidates with the short-
est Euclidean distances between the categories’ prototype and
an input pattern, while the fine classification employs a modi-
fied quadratic discriminant function (MQDF2) [13] to select the
best prototype from these candidates.

2.1 Layered Search Spaces

Figure 1 shows a conceptual figure of a two-layer LSS. For
simplicity the feature space is drawn in only two dimensions,
although a typical feature space for large character set recog-
nition takes 256 or 512 dimensions. In the base layer, we first
cluster the prototypes by the similarity of their features. The
clustering is performed using k-means on Euclidean distance.
A representative is then selected for each cluster, by taking the
centroid of the prototypes of the cluster. We call these repre-
sentatives pivots. These pivots are then clustered to form pivot
clusters in the upper-layer. Again a representative is selected
from each pivot cluster, by taking the centroid of the pivots.
We call these representatives super-pivots. (Note that the pro-
totypes in the base layer may themselves be centroids from an
even lower layer.) Given an input pattern, the search proceeds
in the following steps:

1. Itis matched with all the super-pivots, and the super-pivots
“close enough” to it are selected.

2. Itis matched with all the pivots belonging to the pivot clus-
ters represented by the above selected super-pivots, and the
pivots “close enough” to it are selected.

3. It is matched with all the prototypes within the candidate
clusters represented by the selected pivots, and the closest
prototypes are selected.

Thus, the number of prototypes compared with the input pat-
tern is reduced. A simple repetition of the clustering constructs
a search space with more than two layers.

There are a few parameters in LSS which we need to con-
sider:

1. The number of layers to construct.
2. For each layer, a number (n) of clusters to construct.

3. For each layer, two numbers (I and m) which define how
“close” the representatives in the layer have to be to the input

pattern, in order for the clusters they represent to be selected.
The selection method uses [and m in the following way:

First, the method selects all the representatives within dis-
tance m * d.;p, to the input pattern, where d,,,;,, is the distance
of the closest representative to the input pattern. Then from
these representatives, the method selects the [closest represen-
tatives to the input pattern.

3 OPTIMIZING LSS PARAMETERS

Given a number of layers to construct, we want to find n,
[and m for each layer, such that the recognition time is op-
timized without compromising recognition rate. We optimize
the LSS with respect to the HP-JEITA database. The database
contains 580 persons’ handwritings for 3214 categories of dig-
its, Latin alphabet characters, symbols, hiragana (a set of pho-
netic Japanese characters), katakana (another set of phonetic
Japanese characters) and Japanese Kanji characters of Chinese
origin.

Even for just two layers, to find the optimal values for the six
parameters on the database would take a very long time. Hence
we use two efficient heuristical methods to find the parameters,
and compare their results.

3.1 Data sets and original performance of recognizer

We first choose from the database 543 persons’ patterns, that
is, removing 37 imperfect collections. The database is then
split into 5 testing sets (Te;—Tes) of 100 persons’ patterns each.
When Te; (1 < ¢ < 5) is used as a testing set, we use the re-
maining 443 persons’ patterns to train the original recognizer.
Table 1 shows the performance of the original recognizer on
each set after training. The coarse classification (CC) rate is
the percentage of times the input character is included in the
set of prototypes selected in coarse classification. The whole
recognition (WR) rate is the percentage of times the top pro-
totype returned by the recognizer matches the input character.
The recognition time is the total CPU time used in recognition.

Table 1: Performance of the original recognizer (CC=Coarse Classifi-
cation; WR=Whole Recognition)

Test rate(%) time(ms)
Set | CC | WR | CC | WR

Te: | 993 | 97.1 | 2.03 | 3.18
Tea | 993 | 964 | 2.03 | 3.19
Tes | 98.8 | 96.0 | 2.03 | 3.18
Tes | 988 | 96.0 | 2.02 | 3.18
Tes | 989 | 96.1 | 2.03 | 3.19
Avg. | 99.0 | 96.3 | 2.03 | 3.18

3.2 Sequential optimization

In the first method we first optimize the n, [and m parameters
in the base layer, and then optimize the n, [and m parameters in
the next upper layer, and so on. We call this method sequential
optimization (SO). The merit of this method is that the process
and intermediate result of optimization is visible. It can also be
performed relatively quickly.

The optimization of each layer is performed empirically. That
is, we test the recognition speed and precision using a range of
values for n, [and m, taken at fixed intervals.

For each n and each Te; (1 < ¢ < 5), we obtain the [and
m values which lead to the optimal speed in recognizing Te;,
without compromising the original recognition rate. The over-
all optimal recognition speed, [and m, at n is taken to be the
average of five values obtained, each from one of the testing
sets. For each layer, we use the n, [and m values which lead to
the largest acceleration in recognition.

For the base layer, our tests show that the best speed-up is
obtained when n is within the range of 100 to 400. Within the
range, the optimal speed-ups are similar. Since having more
pivots to cluster in the 2nd layer would help the clustering to be
more refined (that is, members within the same cluster would
bear more resemblance), we let n = 400 in the base layer and
use the corresponding optimal values of [and m of each test set
for the base layer. For the second layer, our tests show that the
best speed-up is achieved when n = 40. At these parameters,
the coarse recognition rates are preserved to up to a decimal
place (see Table 2).

Table 2: Performance of 2-layer LSS with parameters from SO.

Test | base layer 2nd layer | CC CC | WR | WR
Set | (n=400) | (n=40) | rate | time | rate | time
L | m | L] m | (% | ms| (%) | (ms)
Tey | 131 | 1.78 | 29 | 1.90 | 993 | 0.99 | 98.2 | 1.48
Teo | 132 | 1.78 | 29 | 1.93 | 993 | 098 | 98.3 | 1.48
Tes | 135 | 1.80 | 30 | 1.90 | 98.8 | 0.98 | 98.4 | 1.48
Tey | 127 | 1.78 | 29 | 1.88 | 98.8 | 0.98 | 98.4 | 1.47
Tes | 125 | 1.75 | 28 | 1.88 | 989 | 0.97 | 98.3 | 1.47
Avg | 130 | 1.78 | 29 | 1.90 | 99.0 | 0.98 | 98.3 | 1.48

Since it is possible that some non-optimal values for a lower
layer may result in better overall improvement at an upper layer,
the parameters obtained using SO is not necessarily optimal.
Hence we confirm these parameters with a second method.

3.3 Genetic algorithm

In the second method we first set the number of layers to con-
struct, and then employ genetic algorithm (GA) to find the com-
bination of n, [and m values for all the layers, which leads to
the highest average speed in recognizing the testing set without
losing recognition rate.

2T L R
Aa
N ——2-Layers

@110 oA PN R LR LR A 3-Layers; - - -
E

[0 AAAA

£ 1.05 fbge-eeeeee 2 AADDBLAAADDADAADADAADAADLAAD
=

c

Kl

E 100 fefeeeeee Bl
[+

Q

3

QB 0.85 [f-m-mmmm o

0.90

Generation

Figure 2: Recognition time of two-layered and three-layered LSS

©
©
IS

ABDDDAD AADADDAAAAADAAALAAAADALLAAAALLLAALA

©
©
N

©
©
S)

©
o
©

©
©
=)

©
©
IS

Recognition rate (%)

—o-2-Layers|
... & 3-Layers|... .

©
o
N

1 5 9 13 17 21 25 29 33 37
Generation

©
©
)

Figure 3: Recognition rate of two-layered and three-layered LSS

As testing test we use only a portion of Te; since the test
is time-consuming. Each parameter set is considered an indi-
vidual of a population. We start the population with 400 ran-
domly created individuals. New generations are created by ap-
plying crossover and mutation over the selected individuals. At
each iteration 10 best individuals are selected. Selection is per-
formed using a fitness function which gives a weight of 0.98 to
the recognition rate and 0.02 to the recognition time.

Figure 2 and 3 show the average of the 10 best individual
performances during 40 generations. After the convergence of
recognition time has been achieved we observe (Fig. 2) a signif-
icant difference of 0.08 milliseconds between the two and three
layered LSS.

4 RESULTS

Table 3 shows the optimal n, m and [values of a two-layered
LSS obtained using SO and GA respectively. Similar perfor-
mances are achieved using both methods. For the 2nd layer,
the parameters found are very similar. For the base layer, the n
and [parameters found are significantly different. However, the
performance of the recognizer is insensitive to these parame-

ters. Our previous work demonstrated that any value for n from
100 to 400 would result in the optimal performance, while the
optimal values for [vary according to n, where [/n = 0.325
when n = 400 and I/n ~ 0.46 when n = 128 [8]. Hence the
results from SO and GA are consistent. This suggests that the
parameters obtained using both methods are indeed optimal.

Table 3: Parameter set and average performance of a two-layer LSS.

Base layer rate(%)
Method | n | I | m CC | WR
SO 400 | 130 | 1.78 | 40 | 29 | 1.89 | 99.0 | 98.3
GA 128 | 56 | 2.07 | 42 | 32 | 2.18 | 99.0 | 98.3

2nd-layer
n [l [m

When a third layer is added in the SO method, no third layer
n, [, m values which further speed up the recognition time could
be found. Similarly, when three layers are used, GA was unable
to identify any set of parameters which results in performance
as good as the optimal when only two layers are used.

S CONCLUSION

In this paper we presented a layered search space (LSS)
method which naturally extends the structuring search space
(SSS) method we introduced previously. We used two efficient
methods to find the optimal number of layers in LSS. In both
methods we obtained similar results, which show that the two-
layer LSS is optimal for our task of Japanese character recogni-
tion.

ACKNOWLEDGEMENTS

We thank Professor Yamamoto and his colleagues for pro-
viding us with the database ETL-9 and HP-JEITA. This work is
supported by the R&D fund for ”development of pen & paper-
based user interaction” under Japan Science and Technology
Agency.

References

[1] S. Mori, K. Yamamoto, and M. Yasuda, “Research on ma-
chine recognition of handprinted characters”, [EEE PAMI,
vol.6, pp.386—405, 1984.

[2] T.H. Hildebrandt and W.T. Liu, “Optical recognition of
handwritten chinese characters: Advances since 19807,
Pattern Recognition, vol.26, no.2, pp.205-225, 1993.

[3] T. Wakabayashi, Y. Deng, S. Tsuruoka, F. Kimura, and
Y. Miyake, “Accuracy improvement by nonlinear normal-
ization and feature compression in handwritten chinese
character recognition”, IEICE PRU, vol.95, no.43, pp.1-
8, 1995.

[4] N. Sun, M. Abe, and Y. Nemoto, “A handwritten charac-
ter recognition system by using improved directional el-
ement feature and subspace method”, J. IEICE, vol.78,
n0.6, pp.922-930, 1995.

[5] T. Kumamoto, K. Toraichi, T. Horiuchi, K. Yamamoto,
and H. Yamada, “On speeding candidate selection in hand-
printed chinese character recognition”, Pattern Recogni-
tion, vol.24, no.8, pp.793-799, 1991.

[6] C.H. Tung, HJ. Lee, and J.Y. Tsai, “Multi-stage pre-
candidate selection in handwritten chinese character
recognition systems”, Pattern Recognition, vol.27, no.8,
pp-1093-1102, 1994.

[7] Y.P. Yang, O. Velek, and M. Nakagawa, “Accelerating
large character set recognition using pivots”, Proc. 7th IC-
DAR, Edinburgh, UK, pp.262-267, 2003.

[8] Y. Yang, B. Zhu, and M. Nakagawa, “Structuring search
space for accelerating large set character recognition”, IE-
ICE Transactions, vol.88-D, no.8, pp.262-267, 2005.

[9] Y. Yang and M. Nakagawa, “Improving the structuring
search space method for accelerating large set character
recognition”, Proc. 9th IWFHR, Tokyo, Japan, pp.251-
256, 2004.

[10] Y.H. Tseng, C.C. Kuo, and H.J. Lee, “Speeding up chi-
nese character recognition in an automatic document read-
ing system”, Pattern Recognition, vol.31, no.11, pp.1601-
1612, Nov. 1998.

[11] K. Fujimoto, H. Kamada, and K. Kurokawa, “Fast, precise
pre-classification method using projections of feature re-
gions”, Technical report of IEICE. PRMU, vol.97, no0.558,
pp-25-32, 1998.

[12] J. Tsukumo and H. Tanaka, “Classification of handprinted
chinese characters using non-linear normalization and cor-
relation methods”, ICPR, pp.168-171, 1988.

[13] F. Kimura, “Modified quadratic discriminant function and
the application to chinese characters”, IEEE PAMI, vol.9,
no.1, pp.149-153, 1987.

