
Proc. 9th Int’l Conf. on Document Analysis and Recognition (ICDAR 2007) pp.1083-1087

A Visualization Tool to Improve the Performance
of a Classifier Based on Hidden Markov Models

Gleidson Pegoretti da Silva, Masaki Nakagawa
Department of Computer and Information Sciences
Tokyo University of Agriculture and Technology

Naka-cho 2-24-16, Koganei, Tokyo, 184-8588, Japan
pegoretti@hands.ei.tuat.ac.jp, nakagawa@cc.tuat.ac.jp

Abstract

This paper presents a visualization tool to improve the
performance of a classifier based on the hidden Markov
Model. A specific recognition system for which the visual-
ization tool is designed is an on-line handwritten Japanese
character recognition system. The recognition system was
built from already estimated parameter values, which leads
to some difficulties when trying to adjust the system. To
tackle this problem we describe how visual information can
be helpful to interpret the results and how it can be used
to build a set of viewers for helping the tuning task. These
viewers were used to examine the data structure and inter-
nal procedures of the recognition engine allowing to detect
and correct errors in the first implementation. We conclude
the paper comparing the two implemented versions of the
classifier by showing the increase we achieved in recogni-
tion accuracy.

1. Introduction

At present, several types of recognition systems have
been developed and are still growing in popularity. Fa-
cial, voice, gesture and handwriting recognition systems are
good examples of how easy such a system can be found in
daily life.

Before the use, a recognition system must be trained by
extracting necessary information from a set of training pat-
terns. After that, the system becomes able to recognize and
classify a new input data.

Despite the nature of the pattern in real world, the infor-
mation has to be discretized in order to be used by a ma-
chine, resulting in an amount of numbers. If a human has to
deal with the internal data of such a system, the meaning of
the numbers can be confusing and hard to understand.

In this case, a clean graph might be convenient to repre-

sent the information. Since graphs, when properly chosen
and presented, express that same data in a way that is easier
to comprehend, it gives the person a faster way to detect and
correct possible problems.

In this work we present the design of a graphical tool for
handwriting recognition based on hidden Markov models
(HMM) which uses previously trained parameters. Since
we need to make adjustments to fit the estimated data to the
new developed system, an easy way to interpret the under-
lying recognition process is required.

In order to accomplish this task, we propose a imple-
mentation of a set of viewers that allow the visualization of
some important internal structures as well as results from
the procedures.

The rest of this paper is organized as follows. Section
2 gives an overview about HMM. Section 3 proposes the
viewers. Section 4 describes the system, giving some de-
tails about the features used. Section 5 describes the view-
ers. Section 6 makes a comparison of the two implemented
versions of the system and reports some experimental re-
sults. Finally, section 5 concludes this work.

2. Hidden Markov Model

A hidden Markov model (HMM) is a statistical model
which can be used to model any time series. It consists of
nodes representing hidden states, interconnected by links
describing the conditional probabilities of a transition be-
tween the states. Each hidden state also has an associated
set of probabilities of emitting a particular emission symbol,
or also called visible state[2].

A Markov model can be described as a finite state ma-
chine which changes its state once every time unit and
which generates a observation vector ot, with a probability
density bj(ot), every time t that a state j is entered. Further-
more, the transition from state i to state j is also probabilis-
tic and is governed by the discrete probability aij . These



Proc. 9th Int’l Conf. on Document Analysis and Recognition (ICDAR 2007) pp.1083-1087

two matrices A and B that completely describe the model
are called model parameters and have the following proper-
ties. ∑

j

aij = 1 ,
∑

k

bjk = 1 (1)

Given a set of observation samples, the above parame-
ters can be set so as to best describe training patterns for the
known categories. All the transition and emission probabil-
ities can be estimated iteratively from sample sequences us-
ing a variation of the Expectation-Maximization (EM) algo-
rithm. After the training, the models can be used to classify
a new input pattern. Classification proceeds by finding the
single model among candidates that is most likely to have
produced a given observed sequence. Or in other words, an
input pattern is classified by the model that has the highest
posterior probability.

The Bayes’s theorem allows the posterior probability to
be expressed in terms of a prior probability together with a
class-conditional probability p(O,X|M)[1].

posterior =
likelihood× prior

normalizationfactor
(2)

P (M |O,X) =
p(O,X|M)P (M)

p(O)
(3)

where O is the sequence of observations, X is the sequence
of states and M is the model (actually the model parame-
ters).

Given that X is unknown, the required likelihood is com-
puted by summing up all possible state sequences X =
x(1), x(2), x(3), ..., x(T ), that is:

P (O|M) =
∑
X

ax(0)x(1)

T∏
t=1

bx(t)(ot)ax(t)x(t+1) (4)

Alternatively, the likelihood can be approximated by
only considering the most likely state sequence, that is:

P (O|M) = max
X

{
ax(0)x(1)

T∏
t=1

bx(t)(ot)ax(t)x(t+1)

}
(5)

As for continuous HMM, the output probabilities
bx(t)(ot) are usually modeled using the normal (Gaussian)
distribution. Equation 6 describes the output probability for
one feature component using a normal distribution:

b(ot) =
1√

2πσ2
exp

{
− (ot − µ)2

2σ2

}
(6)

Figure 1. An HMM diagram using color to
represent the mapping of an observation se-
quence

3. Proposition of Visualization

When designing classifiers based on HMM, the Viterbi
algorithm[3, 4] is usually chosen to calculate an approxima-
tion of the posterior probability.

The result of Viterbi algorithm is the optimum path
through the trellis state × time which segments the pat-
tern by associating each segment to a particular state. It can
be said that each state maps a particular part of an input
pattern.

By looking a HMM diagram, we can say that the states
represent a cluster of observation data with mean µ. Al-
though it is complicated to visualize this by using the entire
feature vector, it becomes easy if we use just one compo-
nent of the feature vector at a time. However, we need to
create a scheme to represent both pieces of information: the
mean of that cluster and the observation vectors (figure 1).

Since it would be helpful to have a better comprehension
of this mapping, we propose to build three different viewers.
The first one that allows the analysis of the trellis, where the
users can view the entire path and examine the associations
between the segments and the states.

A second viewer in which the input pattern is plotted
after the normalization process and the segmented part of
this pattern is highlighted.

Another good way to detect bad segmentation is to see
where each feature component will be plotted on a Gaussian
graph correspondent to the probability density function of
the associated state. This is the third viewer we propose.

4. System overview

This system was totally written in Java language and it
consists of a graphical interface which has a writing surface
and a set of viewer panels. These panels allow the user to
choose a particular model and state, edit some parameters,
view some of the internal data structures as well as some
procedures results, e.g., the Viterbi path (segmentation).

The recognition engine was not built from scratch. In-
stead, we used an already estimated parameter file with just



Proc. 9th Int’l Conf. on Document Analysis and Recognition (ICDAR 2007) pp.1083-1087

Figure 2. An example of a handwritten pattern
with the direction information

a simple description of the features.
The classifier is based on hidden Markov model (HMM)

with left-to-right topology. It comprises a total amount of
5600 models.

4.1. Features

An input pattern is the handwritten character that we in-
tend to recognize. In the case of this system all the input
patterns are Chinese characters (Kanji). Each Kanji is com-
posed of a set of pen traces called strokes.

Like shown in figure 2, a stroke is just a sequence
of points (X-Y-coordinates) recorded between a pen-down
event (when pen was put into contact with the writing sur-
face) and a pen-up event (when the pen was lifted from
the surface). The line between two consecutive points in
a stroke is called a sub-stroke. All the features used by
the classifier are taken from each sub-stroke. The segment
formed by the pair pen-up and pen-down events is typically
called off-stroke.

In order to explain how the features are extracted and
used in this system, consider the following pair of consec-
utive point information P1 = (x1, y1) and P2 = (x2, y2)
from an arbitrary sub-stroke. With the segment P1P2 in
mind, the features extracted from this sub-stroke are as fol-
low:

• X - The x2 coordinate from the point P2.

• Y - The y2 coordinate from the point P2.

• size - the Euclidean distance of the segment (sub-
stroke) P1P2.

size =
√

(x2 − x1)2 + (y2 − y1)2 (7)

• angle - the inclination angle of the segment P1P2.

angle = arctan
(

y2 − y1

x2 − x1

)
(8)

Figure 3. Three color schemes used to repre-
sent feature components

θ=
X=
Y =

Figure 4. A feature vector representation by
using color scheme.

All the n sub-strokes of a given input pattern are proc-
essed by the feature extractor, which extracts the four fea-
tures described above and returns a vector of size n. The
off-strokes are also used like a normal sub-stroke by the fea-
ture extractor.

5. Viewers

In handwriting recognition, a typical feature used to
model an on-line character pattern is a sequence of point
coordinates (X,Y) as well as direction information (angle
θ formed by two consecutive points). A good way to rep-
resent spatial data can be achieved by using some sort of
visual information. Because we make intensive use of col-
ors in one of our tools (Viterbi Path Viewer), we need to
explain how the colors are used to represent (encode) the
information.

We use three color schemes to encode the feature vectors
in the system. Figure 3 shows these schemes in a normal-
ized box 128 × 128 pixels. From left to right we have the
color scheme used for the components X, Y and angle, re-
spectively.

In order to understand how we use the color schemes,
consider a pattern drawn inside a normalized box. When
extracting the information for X coordinate, instead of us-
ing the value itself we take the color at the same position
according to our color scheme.

As for the angles, we use a unitary vector with direction
θ in the middle of the color scheme and take that color to
encode this information.

By using these schemes, we can represent a given fea-
ture vector by a sequence of boxes colored according to a
specific color scheme (figure 4).



Proc. 9th Int’l Conf. on Document Analysis and Recognition (ICDAR 2007) pp.1083-1087

Figure 5. The normalized pattern viewer with
a mapped region delimited by circles

Each column of figure 4 represents a feature vector with
the components < θ,X ,Y > in a unit of time. And each
line comprises a feature vector component along all the ob-
servation sequence.

5.1. Normalized Pattern Viewer

We implemented a viewer of the written pattern after the
normalization process has been done. The normalization
employed is a common linear normalization.

The user can select the model as well as the state he
wants to examine. Once the state has been selected, the
normalized viewer shows the region mapped by that state
based on the parameters for X and Y coordinates.

At the left side of figure 5, a input pattern is shown after
the normalization process. At the right, the same pattern is
shown just after the user has selected one state of a HMM.
At this time, the system draws two concentric circles in-
dicating the region that should be mapped by the selected
state. In addition, the system highlights a pattern segment
that was really mapped. That way, the user can compare if
the mapping result was satisfactory or not.

By looking at the normalized viewer, we realized that
some definitions in the original feature extractor differed
from ours as described below:

• the normalized pattern had to be centralized in the en-
closure box

• the orientation of Y-axis should be set UP to DOWN

• the size and angle should be related to the point P2 of
the segment P1P2.

5.2. Viterbi Path viewer

The Viterbi Path viewer is a panel that shows a matrix of
boxes that represents a trellis state× time. Given an input

Figure 6. Example of Viterbi Path viewer

pattern and a model, this panel shows the optimum path in
the trellis determined by the Viterbi algorithm[6].

In order to help the task of interpreting the segmentation,
all the boxes in the first row of the trellis is filled with a color
correspondent to the feature vector in that time slot. While
the direction information of an input pattern is plotted using
the HSV color scheme, as for size, X and Y features we use
the gray-scale gradient from white to black according to the
value.

Regardless which feature component is used, the feature
sequence (time) is always plotted along X axis, in the first
row of the trellis, like shown in figure 6.

The cells in first column are colored to represent the
mean µi of the feature component i of each state.

Therefore, by looking at this panel, the user can detect
which segments of the sequence are mapped by each state
and verify if the segmentation was correctly done.

5.3. Gaussian Viewers

The system uses the probability density function of each
state to draw a Gaussian curve for each component of a fea-
ture vector. We call this tool a Gaussian Viewer.

Every time the user selects a state, the feature vectors
that composes the segment mapped by that state are plotted
is the Gaussian Viewer.

Through these graphs, it is possible to see if the compo-
nents of a given segment fall in the region where the proba-
bility is high or low (in case of bad segmentation). Figure 7
shows both cases.

We could verify that in many cases the feature size were
plotted far from the expected region in the Gaussian, sug-
gesting something wrong either in the implementation or in
the estimated data. As for the other features, the segmenta-
tion result was satisfactory.

6. Comparing the implementations

We conducted two experiments in order to compare the
accuracy rate of the two versions of the system - the one
prior the adjustments and the other after the adjustment.

The database used in these tests was the Kuchibue
database[5] which consists of 120 files written by differ-



Proc. 9th Int’l Conf. on Document Analysis and Recognition (ICDAR 2007) pp.1083-1087

Figure 7. Two Gaussians showing feature
vector components of the same segment

Table 1. Best accumulated recognition rates
before the adjustments

File Best1 Best3 Best5 Best10
MDB0116 80.52 90.52 93.45 95.69
MDB0117 88.21 94.84 96.43 98.13
MDB0118 80.14 91.63 94.89 97.04
MDB0119 85.25 92.56 94.37 96.12
MDB0120 86.80 94.55 96.68 98.30
Total 84.18 92.82 95.16 97.06

ent people. The results reported here for both the experi-
ments show the recognition accuracy for the last 5 files of
the database. The total amount of tested patterns for these
experiments are over 20000 and the system recognizes 2965
classes.

The first implementation uses the sub-stroke size as a
feature and the very first implementation of the feature ex-
tractor and normalization procedure. Table 1 shows the ac-
cumulated recognition rate for the Best 1, Best 3, Best 5,
and Best 10 candidates, and the overall performance.

By using the Gaussian viewers and the Viterbi Pattern
Viewer, we realized that the component size of the obser-
vation sequence was not according to the values expected
by the estimated parameters. Most of times the estimated
mean for the component size was around one third of
the extracted value, regardless the model and input pattern
tested. Because the error occurred in a systematic way, we
decided no longer use the feature size.

Moreover, by looking at the Normalized Pattern Viewer
we could detect and correct the differences between the fea-
ture extractor used by the systems that performed the esti-
mation and our system.

The second experiment was conducted by suppressing
the feature size and applying adjustment on the feature ex-
tractor. Table 2 shows the results reaching 96.93 percent for
the Best 1 candidate.

Table 2. Best accumulated recognition after
the adjustments

File Best1 Best3 Best5 Best10
MDB0116 96.10 98.99 99.20 99.46
MDB0117 97.69 99.68 99.82 99.95
MDB0118 95.39 98.79 99.41 99.82
MDB0119 97.47 99.48 99.75 99.88
MDB0120 98.00 96.64 99.79 99.95
Total 96.93 99.30 99.59 99.81

7. Conclusions

In this paper, we have presented a tool for helping in the
tuning of a handwriting recognition system based on HMM
built from an already estimated set of parameters.

By using a set of graphical helper tools it was possible
to detected and correct errors in the feature extractor imple-
mentation. Moreover, systematic cases of bad segmentation
could be found, suggesting the elimination of one feature
that was not contributing to the classification.

After the adjustment was made, our classifier showed an
increase in performance of more than 10% over the original
system. Such an improvement justifies the modifications
made, and demonstrates the usefulness of graphical helper
tools in the tuning of handwriting recognition systems.

Acknowledgement

This research is being supported by the MEXT Research
and Education Fund for Promoting Research on Symbiotic
Information Technology.

References

[1] C. M. Bishop. Neural Networks for Pattern Recognition. Ox-
ford University Press, 1995.

[2] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification
(2nd Edition). Wiley-Interscience, November 2000.

[3] J. Forney, G.D. The Viterbi algorithm. Proceedings of the
IEEE, 61:268–278, 1973.

[4] L. Lou, H. Implementing the Viterbi algorithm. Signal Pro-
cessing Magazine, IEEE, 12:42–52, 1995.

[5] M. Nakagawa and K. Matsumoto. Collection of on-line hand-
written Japanese character pattern databases and their analy-
sis. IJDAR, 7(1):68–81, 2004.

[6] L. R. Rabiner. A tutorial on hidden Markov models and se-
lected applications in speech recognition. In A. Waibel and
K.-F. Lee, editors, Readings in Speech Recognition, pages
267–296. Kaufmann, San Mateo, CA, 1990.


