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Abstract 
 
This paper describes “layered search spaces” (LSS) to 
accelerate recognition of a large category set. The 
basic concept is to employ pivots into a search space of 
character pattern prototypes. Given an input pattern, it 
is compared only with the pivots and those close to it 
are selected. Then, it matched with prototypes close to 
the selected pivots. This paper introduces multiple 
layers. An input pattern is compared with the top-layer 
pivots and those close to it are selected. Then, it is 
compared with the 2nd-top-layer pivots close to the 
selected top-layer pivots. This comparison is repeated 
until in the base-layer and a small set of candidate 
prototypes are selected. We applied this method to a 
handwritten Japanese character recognizer with the 
result that the coarse classification time was reduced to 
47.1% and the whole recognition time was reduced to 
46.2% while keeping classification and recognition 
rates as the original.  
 
 
1. Introduction 
 
Large character set recognition is problematic not only 
in recognition rate but also in recognition speed. 
Chinese, Japanese or Korean have thousands of 
different categories, so that recognition takes more time 
than Latin alphabet or number recognition.  

A general approach to improve the recognition speed 
is to perform coarse classification, pre-classification or 
candidate selection before the fine classification [1-4]. 
The common characteristic of these methods is that 
candidates are selected during recognition process, so 
that we call them as a dynamic approach. 

The alternative approach is to structure the search 
space [5, 6]. The feature space of categories is divided 
into smaller clusters and the centroid of each cluster is 
derived as a pivot. Since the structuring is made before 
the recognition process, we distinguish it from the 
dynamic approach mentioned above. We call this a 
“structuring search space (SSS)” method and we have 
applied it to our recognizer of handwritten Japanese 
characters with notable effect [5, 6]. There have been 
some other methods to structure the search space. The 
simplest is the ordered space. Another is the tree 

structure. They can be applied when prototypes are 
ordered in some sense or classified into a tree structure. 
On the other hand, the SSS method does not assume 
such structures and we make a structure by clustering.  

Tseng et al. proposed a static approach by clustering 
prototypes employing a small number of simple 
features for printed character recognition [8]. Fujimoto 
et al. proposed another where coarse classification is 
made in a sub-space much smaller than that for fine 
classification. Several different small sub-spaces of the 
same structure were adopted to accelerate the 
recognizer [9]. The above two methods, however, adds 
the additional problem of finding a feature space for 
coarse classification. On the other hand, our method 
works in the original feature space for fine 
classification. We only have to assume distance space 
for this single space. We tried a similar approach as the 
above with a smaller set of features for handwritten 
Japanese character recognition but we could not speed 
up recognition without sacrificing recognition rate.  

This paper is an updated version of [7] and presents a 
systematic extension of SSS to multiply layered search 
spaces. We call it as “layered search spaces” (LSS).  

In this paper, Section 2 describes the handwritten 
Japanese character recognizer for which the proposed 
method has been evaluated. Section 3 presents the LSS 
model. Section 4 describes candidate selection method. 
Section 5 presents experiments. Section 6 presents the 
analysis on the results. 

 
2. Japanese character recognizer 
 
The recognizer of handwritten Japanese characters used 
for this research represents each scanned image of a 
character pattern as a 256-dimensional feature vector. It 
scales every input pattern to a 64x64 grid by non-linear 
normalization [9]. Then, it decomposes the normalized 
image into 4 contour sub-patterns representing 
directional features of the 4 main orientations. Finally, 
it extracts a 64-dimensional feature vector for each 
contour pattern from the convolution with a blurring 
mask (Gaussian filter). The coarse classification selects 
40 candidates with the shortest Euclidian distances 
between the categories’ prototype and an input pattern. 
The fine classification employs the modified quadratic 
discriminant function (MQDF2) [10].  
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3. Model of layered search space 
 
Fig. 1 is a conceptual figure of the feature space drawn 
in two-dimensional space of two-layered search spaces.  
First, we cluster all the prototypes and calculate the 
centroid of each cluster as a pivot to create the 
base-layer search space. Then, we follow the same 
procedure for all the obtained pivots and prepare the 

2nd-layer search space. A repetition of this procedure 
creates multiple layered search spaces.  

When an input pattern is recognized, it is compared 
with all the top-layer pivots and those close to it are 
selected. Then, it is compared with the 2nd-top-layer 
pivots belonging to the clusters of the selected top-layer 
pivots. This comparison is repeated until in the 
base-layer and a finite set of candidate prototypes are 
selected. Thus, the number of prototypes compared 
with the input pattern is reduced.  

Since the number of clusters in each layer and 
number of layers affect the performance of 
acceleration, the optimal numbers must be determined. 
We make experiments to determine them. 
 
4. Candidate selection 
 
We select pivots or prototypes close to the input pattern 
using the following hybrid candidate selection method 
(CS-H, in short), which is the same as for SSS. It is 
composed of the following two algorithms: 
Candidate selection algorithm-I (CS-I) sets a constant 
l for the number of candidate pivots or prototypes, and 
then selects only l pivots or prototypes as candidates, 
which have less than or equal to the l-th shortest 
Euclidian distance to the input pattern. 
Candidate selection algorithm-II (CS-II) finds the 
nearest pivot or prototype with the shortest distance dmin 
to the input pattern, and then sets a multiplying 
coefficient m (m>1), thus all the pivots or prototypes 
within the distance m*dmin become candidates. 
Hybrid candidate selection method (CS-H) first 
applies CS-II for its high speed to reduce the number of 

candidates and then applies CS-I to further reduce their 
number. Note that in some cases when the output of 
CS-II is less than the constant l, CS-I is skipped. 
 
5. Experiments 
 

We first prepare training and testing sets of 
handwritten Japanese character patterns. Secondly, we 
find the best parameters to speed up recognition 
without damaging recognition accuracy for the 
base-layer search space. Thirdly, we find the best 
parameters for the 2nd-layer search space. 
 
5.1 Preparation for experiments 
 
(1) Training set, testing set and environment 
We use HP-JEITA database. It includes 580 persons’ 
handwriting for the 3,214 categories of digits, Latin 
alphabet, symbols, hiragana (a set of phonetic Japanese 
characters), katakana (another set of phonetic Japanese 
characters) and Kanji characters of Chinese origin. We 
choose 543 persons’ patterns by removing 37 persons’ 
imperfect collections. 

We split the database into group 1 to group 5 of 100 
persons’ patterns each and the group 6 of 43 persons’ 
patterns. We select one group from the group 1 to 5 as 
the testing set i and merge all the remaining groups 
(100 x 4 + 43 persons’ patterns) as the training set i.  

We perform experiments on a PC with an Intel 
Pentium4 CPU of 2.4GHz and 512M RAM employing 
Microsoft Windows XP Professional. 
(2) How to use training sets and testing sets 
For each testing set i, we use the training set i to train 
the original recognizer described in 2 for obtaining the 
prototype of each character category in the feature 
space. We also use the training set i to obtain the best 
values for the parameters m and l for each layer and 
then evaluate the performance on the testing set i. 
(3) Original state of the recognizer 
Table 1 shows the original performance of the 
recognizer to each training set Tr-i by which prototypes 
have been trained and to each testing set Te-i. Tr-Av. 
and Te-Av. denote the average for the training sets and 
that for testing sets, respectively. 
 
5.2 Construction of the base-layer search space 
 

Table 1. Performance of the original recognizer.
Measure 

 
Set 

Coarse 
classification 

rate (%) 

Coarse 
classification 
time (msec.) 

Whole 
recognition 

rate (%) 

Whole 
recognition 

time (msec.) 
Tr-1 Te-1 99.0 99.3 13.1 13.1 98.2 97.1 20.0 20.0 
Tr-2 Te-2 99.1 99.3 13.1 13.1 98.3 96.4 20.0 20.1 
Tr-3 Te-3 99.1 98.8 13.1 13.0 98.4 96.0 20.1 20.1 
Tr-4 Te-4 99.1 98.8 13.1 13.1 98.4 96.0 20.0 20.0 
Tr-5 Te-5 99.1 98.9 13.0 13.1 98.3 96.1 20.1 20.1 

Tr-Av Te-Av 99.1 99.0 13.1 13.1 98.3 96.3 20.0 20.0 

 
Fig. 1. Conceptual figure of the feature space. 
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Construction of the base-layer search space for LSS is 
completely the same as that of the single layer for SSS. 
Referring to [6], we know that acceleration effect is 
obtained on a wide range where the search space is split 
into from about 100 to 400. According to the algorithm 
of LSS, we consider that the larger the number is, the 
more the search is accelerated, so that we select 400 to 
build the base-layer search space.  

When the search space is divided into 400 clusters, 
the optimal values of parameters m and l are 130 and 
1.75, respectively. These values were experimentally 
obtained in our previous research on SSS, the 
single-layered LSS [6]. Since we employ five pairs of 
training sets and testing sets to make experiments, we 
should validate those values to be also suitable for these 
five pairs of pattern sets.  

We made experiments by shifting m from 120 to 140 
and l from 1.65 to 1.85 for these 5 pairs of pattern sets. 
The experiment results show that, for all the sets, 
including even testing sets, the recognition rates can be 
kept as the same as the original rate up to the third 
significant digit in the range around the l=130 5±  and 
m=1.775 025.0± , and the accelerate effect is the same 
as SSS. Table 2 summarizes the results for a pair of a 
training set and a testing set into a singe row. 

 
5.3 Construction of the 2nd-layer search space 
 
In order to find the optimal number of super clusters in 
the 2nd-layer, we must try possible numbers of super 
clusters through experiments as we did in [6].  

For obtaining the best acceleration effect for each 
number of super clusters, we must still search for the 
optimal parameters l for CS-I and m for CS-II with 
respect to the number of super clusters. Then, we 
employ the best l and m for CS-H. 
For deriving the optimal parameters m and l, we 

search for the best parameter values for a training set, 
then we validate these derived parameter values for a 
testing set. We repeat this for the five pairs of training 
sets and testing sets. 

 
5.3.1 Candidate selection by CS-I for the 2nd-layer 
 
First, we find out the optimal value of n (number of 
supper clusters) and the optimal value of l 

corresponding to n on the training set (Tr-1~ Tr-5).  
For confirming these optimal values of the 

parameters we adopt these values to recognize the 
testing set (Tr-1~ Tr-5).  

The results of experiments show that the best 
performance is obtained when n is around 40. Table 3 
shows the optimal value of n and that of l for each 
training set and testing set when the original coarse 
classification rate and whole recognition rate are kept. 
From Table 1 and Table 3, we can confirm that the 
coarse classification time is reduced from 13 to 6.30 
msec. (48.5% of the original) and the whole recognition 
time is reduced from 20.1 to 9.48 msec. (47.2% of the 
original) by setting n and l as around 40 and 29, 
respectively, while keeping the original coarse 
classification rate and whole recognition rate up to the 
third significant digit. 

 
5.3.2 Candidate selection by CS-II for the 2nd-layer 
 
Secondly, we test CS-II. We should find out the 
optimal parameter m corresponding to the optimal 
number of super clusters. We follow the same strategy 
as the above to find the best value of m. 

Table 4 shows the optimal value of n and that of m 
for each training set and testing set when the original 
coarse classification rate and whole recognition rate are 
kept. From Table 1 and Table 4, we know that the best 
values of the parameters n and m are located around 40 
and 1.9 025.0± .  

For every pair of training set and testing set, the 
coarse classification time is reduced to 47.9% of the 
original and the whole recognition time is reduced to 
46.8% of the original, while the coarse classification 
rates and the whole recognition rates are kept to the 
third significant digit of their originals. 

 
5.3.3 Candidate selection by CS-H for the 2nd-layer 
 
We apply CS-H for the 2nd-layer as well as the 
1st-layer and the coarse classification. The necessary 
parameters for CS-H have been obtained from the 
above experiments. These are:  
l of CS-I is 29 1± , m of CS-II is 1.9 25.0±  and the 

Table 2. Performance with 400 clusters and CS-H.
Coarse 

classification 
Base- 
layer 

Measure
 
 
Set l m l m 

Coarse 
classificatio
n rate (%) 

Coarse 
classification 
time (msec.) 

Whole 
recognition 

rate (%) 

Whole 
recognition 

time (msec.)

Tr-1 Te-1 131 1.775 99.0 99.3 7.30 7.30 98.2 97.1 10.7 10.5 
Tr-2 Te-2 132 1.775 99.1 99.3 7.30 7.31 98.3 96.4 10.7 10.8 
Tr-3 Te-3 135 1.800 99.1 98.8 7.35 7.32 98.4 96.0 11.1 11.2 
Tr-4 Te-4 127 1.775 99.1 98.8 7.28 7.28 98.4 96.0 10.5 10.4 
Tr-5 Te-5 125 1.75. 99.1 98.9 7.22 7.21 98.3 96.1 10.1 10.0 

Tr-Av Te-Av 

40 1.8 

130 1.775 99.1 99.0 7.29 7.28 98.3 96.3 10.6 10.6 

Table 3. Performance on training/testing sets with the 2nd-layer divided 
into around 40 super clusters and SC-I used for candidate selection. 

Coarse 
classification 

rate (%) 

Coarse 
classification 
time(msec.) 

Whole 
recognition 

rate (%) 

Whole 
recognition 
time(msec.)

Pattern 
set 

n: No. of 
super 

clusters

l: No. of 
candidate 

super 
clusters Tr Te Tr l Te Tr Te Tr l Te 

1 40 29 99.0 99.3 6.29 6.31 98.2 97.1 9.48 9.48
2 40 29 99.1 99.3 6.30 6.31 98.3 96.4 9.50 9.49
3 41 30 99.1 98.8 6.38 6.38 98.4 96.0 9.56 9.59
4 40 29 99.1 98.8 6.32 6.3.0 98.4 96.0 9.48 9.47
5 40 28 99.1 98.9 6.25 6.24 98.3 96.1 9.42 9.41

Av 40 29 99.1 99.0 6.30 6.30 98.3 96.3 9.49 9.49

0-7695-2521-0/06/$20.00 (c) 2006 IEEE



 4

number of super cluster n is around 40 in the 2nd-layer; 

l is 130 5± , m is 1.775 025.0±  and n is 400 in the 
base-layer; l is 40 and m is 1.8 in the coarse 
classification without losing recognition rate.  

Table 5 shows the results on the training sets and 
testing sets, respectively. The coarse classification is 
reduced from original 13 msec. to 6.13 msec. (47.1% of 
the original) and the whole recognition time is reduced 
from original 20.1 msec. to 9.28 msec. (46.2% of the 
original) while the coarse classification time and the 
whole recognition rate is kept to the third significant 
digit of the original. 
 
6. Analysis on experiments 
  
Fig. 3 shows the coarse classification time and the 
whole recognition time of the original recognizer and 
the recognizer used along with single-layered LSS 
(SSS) and that with two-layered LSS when CS-H is 
adopted to select candidates. It shows that the 
single-layered LSS (SSS) accelerates them significantly 
and that two-layered LSS accelerates them to some 
extent without degrading recognition performance. 
However, the acceleration effect of the 2nd-layer is not 
as high as the base-layer. The reason is that the 
distances between the pivots are much longer than that 
between the prototypes and the number of pivots is 
much less than that of prototypes. When we cluster the 
pivots into super clusters, the optimal number of super 
clusters becomes as small as 40 and the diameter of 
each super cluster become very large. Therefore, we 
must keep a high portion (around 29) of super clusters 
in order to obtain the necessary pivot, and the cluster 
represented by this pivot must include the right 
prototype. For the input pattern located at the boundary 

of super clusters, a high portion of super clusters must 
be considered. For this reason, we do not consider to 
add another layer to the search space. 
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Fig. 3. Performance of LSS with one and two layers. 

Table 5. Performance on testing sets with the 2nd-layer divided into 
around 40 super clusters and CS-H used for candidate selection. 

Coarse 
classifi-
cation 

Base layer 2nd layer 
Coarse 

classific-
ation 

rate (%) 

Coarse 
classifica- 
tion time 
(msec.) 

Whole 
recogniti-

on rate(%)

Whole 
recogniti
on time
(msec.)

Patter-
n set 

l m n l m n l m Tr Te Tr Te Tr Te Tr Te 
1 131 1.775 40 29 1.900 99.099.3 6.13 6.15 98.2 97.1 9.28 9.29
2 132 1.775 40 29 1.925 99.199.3 6.13 6.13 98.3 96.4 9.27 9.29
3 135 1.800 41 30 1.900 99.198.8 6.15 6.14 98.4 96.0 9.30 9.30
4 127 1.775 40 29 1.875 99.198.8 6.10 6.12 98.4 96.0 9.27 9.26
5 125 1.750 40 28 1.875 99.198.9 6.09 6.11 98.3 96.1 9.25 9.24

Av 

40 1.8 400 

130 1.775 40 29 1.895 99.199.0 6.12 6.13 98.3 96.3 9.27 9.28

Table 4. Performance on training/testing sets with the 2nd-layer divided 
into around 40 super clusters and CS-II used for candidate selection. 

Coarse 
classification 

rate (%) 

Coarse 
classification 
time(msec.) 

Whole 
recognition 

rate (%) 

Whole 
recognition 
time(msec.)

Pattern 
set 

n: No. of 
super 

clusters 

m: 
Multiplying 
coefficient 

Tr Te Tr l Te Tr Te Tr l Te 
1 40 1.900 99.0 99.3 6.25 6.26 98.2 97.1 9.44 9.44
2 40 1.925. 99.1 99.3 6.23 6.25 98.3 96.4 9.40 9.39
3 41 1.900 99.1 98.8 6.24 6.22 98.4 96.0 9.42 9.40
4 40 1.875 99.1 98.8 6.20 6.20 98.4 96.0 9.38 9.37
5 40 1.875. 99.1 98.9 6.21 6.19 98.3 96.1 9.40 9.38

Av 40 1.895 99.1 99.0 6.23 6.22 98.3 96.3 9.41 9.40
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