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Summary 
This paper proposes a “structuring search space” (SSS) method 
aimed to accelerate recognition of large character sets. We divide 
the feature space of character categories into smaller clusters and 
derive the centroid of each cluster as a pivot. Given an input 
pattern, it is compared with all the pivots and only a limited 
number of clusters whose pivots have higher similarity (or 
smaller distance) to the input pattern are searched in, thus 
accelerating the recognition speed. This is based on the 
assumption that the search space is a distance space. We also 
consider two ways of candidate selection and finally combine 
them. The method has been applied to a practical off-line 
Japanese character recognizer with the result that the coarse 
classification time is reduced to 56% and the whole recognition 
time is reduced to 52% while keeping its recognition rate as the 
original. 
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1. Introduction 

Chinese, Japanese or Korean have a large character set 
with several thousands different categories, so that 
recognition takes more time than Latin alphabet or number 
recognition. Although the hardware development for 
personal computers has been remarkable, the faster the 
character recognition, the more capacity can be provided 
to run multiple recognizers, combine them with context 
post-processing, incorporate them in handwritten text 
search and so on. Moreover, there is high demand for 
character recognition on small devices like mobile phones 
or PDAs. Therefore, to accelerate large character set 
recognition has been studied to have practical importance.  

The two-stage architecture of coarse classification (pre-
classification or candidate selection) and fine classification 
has been employed in many practical systems [1, 2]. 
Coarse classification should be significantly faster than 
fine classification.  Selecting a limited number of 
candidates robustly, prototype patterns to match with the 
input pattern in the fine classification are reduced from 
several thousands to several hundreds or even less. 
Consequently, the whole recognition process is 
accelerated.  

Many approaches use simpler distance measures than 
those for fine classification [3,4]. The confidence 
evaluation provides even more precise candidate selection 

[5]. Others employ simple features different from those for 
fine classification [6]. Sequential (multi-stage)  

 
Classifications employing a partial set of features at 

each stage are also applied as in [7]. This type of candidate 
selection is made during recognition so we call it a 
dynamic process. 

The other possible method is to structure the search 
space so that the search for candidates can be made only to 
some portion in the search space as in [8]. The feature 
space of character categories is divided into smaller 
clusters and the centroid of each cluster is derived as a 
pivot. Given an input pattern, it is compared with all the 
pivots and only a limited number of clusters whose pivots 
have higher similarity (or smaller distance) to the input 
pattern are searched in, with the result that we can 
accelerate the recognition speed. Since this is made before 
the recognition process, it is a static process and we 
distinguish it from the dynamic process mentioned above. 
We call this a “structuring search space (SSS)” method 
and we have applied it to our off-line recognizer of 
handwritten Japanese characters with notable effect [8].  

There have been some methods to structure the search 
space and make the search faster. The simplest is the 
ordered space. Another is the tree structure. They can be 
applied when prototypes are ordered in some sense or 
classified into a tree structure. On the other hand, the SSS 
method does not assume such structures and we make a 
structure by clustering. 

For printed character recogniton, Tseng et al. proposed a 
static approach by clustering prototypes employing simple 
and small number of features [9]. Fujimoto et al. showed 
another approach where coarse classification is made in a 
sub-space much smaller than that for fine classification 
[10]. Taking multiple small sub-spaces makes it even 
faster. The above two approaches, however, adds the 
additional problem of finding a feature space for coarse 
classification. On the other hand, our method works in the 
original feature space for fine classification. We only have 
to assume distance space for this single space. We tried a 
similar approach with a smaller set of features for 
handwritten Japanese character recognition but we could 
not speed up recognition without sacificing recognition 
rate significantly.  

This paper is a formal and updated version of [8]. 
Section 2 of this paper describes the off-line recognizer of 
handwritten Japanese characters for which the proposed 
method has been evaluated. Section 3 presents the SSS 
method and its evaluation. Section 4 proposes a hybrid 
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candidate selection, incorporates it into the SSS method 
and evaluates its effect. Section 5 concludes the paper. 

2. Off-line Character Recognizer 

The off-line recognizer of handwritten Japanese characters 
used for this research represents each character as a 256-
dimensional feature vector. It scales every input pattern to 
a 64x64 grid by non-linear normalization [11]. Then, it 
decomposes the normalized image into 4 contour sub-
patterns representing directional features of the 4 main 
orientations. Finally, it extracts a 64-dimensional feature 
vector for each contour pattern from the convolution with 
a blurring mask (Gaussian filter). 

The coarse classification step precedes the actual fine 
classification. The original form of the coarse 
classification selects 40 candidates with the shortest 
Euclidian distances between the categories’ mean vectors 
and an input pattern. The fine classification employs a 
modified quadratic discriminant function (MQDF2) [12]. 
We may call this step as a fine recognizer. 

It was trained with a training set composed of 400 
persons’ handwritten character patterns (1,285,600 
patterns of 3,214 categories) in the HP-JEITA database. 
HP-JEITA database includes digits, Latin alphabet 
characters, symbols, hiragana (a set of phonetic 
characters), katakana (another set of phonetic characters) 
and Japanese Kanji characters of Chinese origin. 

3. Structuring the Search Space 

In this section we present the basic idea and details of the 
design of the SSS. Then, we show the evaluation through 
recognition experiments. 

3.1 Basic model 

For large category set recognition, we consider to divide 
the feature space of these categories into smaller clusters 
taking the centroid of each cluster as a pivot. Fig. 1 is a 
conceptual figure of the feature space drawn in two-
dimensional space (although typical feature space for large 
character set recognition takes 256 or 512 dimensions). It 
should be noted that each cluster is made up of different 
categories rather than multiple prototypes of a single 
category. 

Given an input pattern, it is compared with all the pivots 
and only a limited number of clusters whose pivots have 
higher similarity (or smaller distance) to the input pattern 
are searched in, with the result that we can accelerate the 
recognition speed. This is based on the assumption that the 
search space is a distance space.  

After the search space is structured, it is adopted before 
the coarse classification as shown in Fig. 2. 

The problem here is to find the appropriate number of 
clusters (i.e., the number of pivots). The more the number 
of pivots is, the more clusters must be searched in 
although each cluster becomes smaller. 

3.2 Detailed design 

The ultimate goal is to achieve the highest recognition rate 
with the smallest recognition time. Generally speaking, 
however, there is a trade-off between recognition rate and 
its speed. Moreover, the optimal point depends on the 
application and environment. Therefore, we need to clarify 
the characteristic of our method, i.e., the relationship 
between the recognition rate and recognition time and find 
the optimal parameters to gain the best balance between 
speed and precision. 

3.2.1 Candidate selection 

Given an input pattern, and having compared it with all 
the pivots, the next question is how to select which 
candidate clusters we search in. There are two ways to 
select them: 

Prototypes

Recognition 
result

Coarse　
classification

Candidate　
prototypes

Fine classification

SSS

Prototypes in 
candidate clusters

Fig. 2  Structure of a recognizer with SSS 
Candidate clusters

Input 
pattern

:Prototype
:Pivot
:Input pattern

Fig. 1 Conceptual figure of structuring the search space 
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(1) We set a constant for the number of candidate clusters, 
and select l clusters whose centroids have the shortest 
Euclidian distance to the l-th shortest Euclidian distance to 
the input pattern (Algorithm-I). 
(2) We find the nearest centroid with the distance dmin, and 
then we set a multiplying coefficient m (m>1) so that all 
the clusters within the distance m*dmin become candidate 
clusters (Algorithm-II). 

3.2.2 An optimal number of clusters 

The problem posed in 3.1 remains to be solved. That is to 
find the appropriate number of clusters (i.e., the number of 
pivots). Actually, it is difficult to find out an optimal 
number of clusters through inference. Our base recognizer 
has 3,214 prototypes and they can be divided into from 2 
to 3,213 clusters. The optimal number of clusters may 
depend on the method for selecting candidate clusters 
(section 3.2.1) and on the method for selecting original 
centroids (section 3.2.3). We have to make experiments to 
determine the optimal number. They follow in section 3.3. 

3.2.3 Details of clustering 

We employ the LGB algorithm [13] for clustering since it 
is one of the simplest and most effective methods. In order 
to start the algorithm, however, we have to define initial 
clusters or centroids, which somehow determine the result. 
We have tried the following three methods for selecting 
initial clusters where “n” is assumed as the number of 
clusters:  
(1) Measure the distance from the origin point to every 
prototype in the feature space and partition the distance (1-
dimensional space) from the shortest distance to the 
longest distance into n sections of the equal length. Then, 
place all the prototypes into those sections according to 
the distances. The resulting sections are the initial clusters. 
(2) Choose only one axis (dimension) among 256 
dimensions of the feature space and partition the axis (1-
dimensional space) from the smallest value to the largest 
value into n sections of the equal length. Then, place all 
the prototypes into those sections according to their values 
of the chosen axis. The resulting sections are the initial 
clusters.  
(3) Divide all the prototypes into n initial clusters of 
equal size according to the order of the character code.  
Experimental results have revealed that the influence of 

different initial centroids is very subtle. Therefore, we 
employed the simplest method (3). 

3.2.4 Management of clusters 

After all the prototypes are divided into small clusters, we 
manage them to speed up the search. We store the 
following information in a file: the total number of 

clusters, the number of prototypes and the centroid of each 
cluster, indexes of all the prototypes in each cluster and 
the dimension of feature vectors. Thus, all the pre-
calculated information is loaded from the file when the 
search process is carried out. 

3.3 Experiments 

In this section, we have three tasks to do. The first task is 

Table 1. Performances when prototypes are clustered into 400. 
Number of Clusters:  400 (Training pattern set) 

Number of 
Candidate 

clusters 

Coarse 
Classification 

Rate 

Coarse 
Classification 
Time (msec.) 

Whole 
Recognition 

Rate 

Whole 
Recognition 
Time (msec.)

1 50.2 3.16 50 4.65 
2 63.9 3.22 63.7 6.76 
5 79.8 3.39 79.4 8.32 
10 88.5 3.75 88 9.78 
20 94.1 4.15 93.5 10.2 
30 96.3 4.57 95.5 10.6 
40 97.2 4.96 96.5 11.08 
50 97.7 5.34 97 11.46 
60 98.2 5.72 97.4 11.85 
70 98.4 6.09 97.7 12.2 
80 98.6 6.46 97.9 12.59 
90 98.8 6.82 97.9 12.96 

100 98.9 7.18 97.9 13.32 
110 99 7.52 98.1 13.68 
130 99.1 8.17 98.2 14.31 
150 99.1 8.83 98.2 15.04 
170 99.1 9.46 98.2 15.64 
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Fig. 3 Coarse classification performances for 400 
clusters.

40

50

60

70

80

90

100

4 6 8 10 12 14 16 18
Whole Recognition Rime (msec)

W
ho

le
R

ec
og

ni
tio

n 
R

at
e 

(%
)

Fig. 4 Whole recognizer performances for 400 clusters 
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Table 2. Performances when prototypes are clustered into 100.  
Number of Clusters: 100(Training pattern set) 

Number of 
Candidate 

clusters 

Coarse 
Classification 

Rate 

Coarse 
Classification 
Time (msec.) 

Whole 
Recognition 

Rate 

Whole 
Recognition 
Time (msec.)

1 50.4 2.15 49.3 6.69 
2 65.8 2.34 65.5 8.05 
5 84 2.93 83.6 9.05 

10 92.9 3.71 92.3 9.85 
15 96 4.42 95.3 10.55 
16 96.4 4.45 95.6 11.01 
17 96.7 4.47 95.9 11.12 
20 97.4 5.12 96.6 11.27 
25 98.1 5.77 97.2 11.96 
30 98.4 6.4 97.6 12.59 
35 98.6 7 97.9 13.19 
40 98.8 7.56 98 13.75 
45 99 8.12 98.1 14.32 
50 99.1 8.64 98.2 15.16 
55 99.1 9.16 98.2 15.86 
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Fig. 5 Coarse classification performances for 100 clusters. 

40

50

60

70

80

90

100

6 8 10 12 14 16 18

WholeRecognition Time (msec)

W
ho

le
R

ec
og

ni
tio

n 
R

at
e 

(%
)

Fig. 6 Whole recognizer performances for 100 clusters 

to find how many clusters the search space should be split 
into. The second is to know how many candidate clusters 
or pivots should be taken for comparison with respect to 
the number of clusters. The third is to decide the 
multiplying coefficient m for Algorithm-II and the 
constant l for the number of candidates for Algorithm-I. 
These should be considered to speed up the recognition 
time while keeping the recognition rate. 

We start form the second task, then proceed to the first 
task and the third task. 

3.3.1 Preparation for experiments 

(1) Training set, testing set and environment 
We use the same training set as that used to train the off-
line character recognizer, i.e., 400 persons’ handwritten 
character patterns x 3,214 categories (1,285,600 patterns) 
form the HP-JEITA database. As for the testing set, we 
prepared 100 persons’ handwritten character patterns for 
3.214 categories from the HP-JEITA database. These 100 
writers are different from the writers for the training 
pattern set.  

We made experiments on a PC with an Intel Pentium4 
CPU of 2.4GHz and 512M RAM employing Microsoft 
Windows XP Professional. 
 
(2) Original state of the recognizer 
Before the use of SSS, the coarse classification of the 
original character recognizer produced 40 candidates with 
a coarse classification rate (the rate that the correct answer 
is within the candidates) of 99.1% in 13 milliseconds and 
the whole recognition produced 98.2% recognition rate in 
20.1 milliseconds for the training set. 

For the testing set, the coarse classification rate is 
99.5% in 13 milliseconds and the whole recognition 
produced 97.7% recognition rate in 20.1 milliseconds. 

3.3.2 Fixed number of candidate clusters 

(1) Optimal number of candidate clusters 
Table 1 shows performances of the coarse classifier and 
the whole recognizer with respect to various numbers of 
candidate clusters when the prototypes are divided into 
400 clusters. Fig. 3 presents the relation between the rate 
and the time of the coarse classification.   

The coarse classification rate goes up significantly up to 
about 96.3% as the number of candidate clusters increases 
up to about 30, then goes up gradually up to the best rate 
of 99.1% as the number of candidate clusters increases up 
to 130. This is less than 1/3 of the total cluster number 
(400), and the coarse classification time has been reduced 
to 8.19 msec. i.e., 63% from the original 13 msec. without 
sacrificing the recognition rate. When we look at the effect 
in the whole recognizer, 20.1 msec. is reduced to 14.38 
(71.5%). 

It would be needless to say that we can even speed up 
the recognition process if we can sacrifice the coarse 
classification rate and recognition rate to some extent as 
shown in Table 1 and Fig. 3 and Fig. 4. 

Table 2 and Fig. 5 and Fig. 6 shows the result for 100 
clusters. It shows almost the same relation and 
improvement as was obtained for 400 clusters. 
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Table 3. Performance when coarse classification rate is around 99.1% 
and whole classification rate is around 98.2%. 

Number of 
Cluster 

Number of 
Candidate 

cluster 

Coarse 
Classification 
Time (msec.) 

Whole 
Recognition 
Time (msec.)

2 2 24.4 14.3 
50 26 16.56 9.66 
100 50 15.16 8.64 
150 65 14.59 8.36 
200 70 14.39 8.21 
250 84 14.09 8.11 
300 95 14.1 8.13 
350 115 14.16 8.15 
400 130 14.31 8.17 
450 135 14.37 8.23 
500 138 14.45 8.48 
550 141 14.63 8.61 
600 145 14.75 8.9 
650 146 14.94 9.095 
700 153 15.12 9.31 
900 160 16.14 10.01 
1100 172 17.44 10.83 
1300 180 18.46 11.64 
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Fig. 7 Coarse classification and whole classification settings satisfying 
99.1% rate for Method-I. 

(2) Optimal clustering size for Method-I 
Table 3 shows the performance for different choices of the 
number of clusters, and the number of candidate clusters 
that satisfy the condition that the coarse classification rate 
is around 99.1% and recognition rate around 98.2%. 

Fig. 7 shows that the coarse classification time increases 
if the cluster number is smaller than 150 or bigger than 
500. In the range 150-500, however, the coarse 
classification time is stable and reduced up to 8.11 msec. 

i.e., 62.4% from the original 13 msec. while the number of 
candidate clusters need to be linear to that of the clusters 
but it is only from 5 to 15% of the total number of clusters. 
When we look at the effect to the recognizer as a whole, 
20.1 msec. is reduced to 14.09 msec. (70.1%) while 
achieving a 98.2% recognition rate. 

3.3.3 Unfixed number of candidate clusters 

(1) Optimal number of candidate clusters  

This section considers the performances when the number 
of candidate clusters is not fixed and determined according 
to Method-II described in 3.2.1. 

Table 4. Recognition performances for multiplying coefficient m.  
Number of Clusters: 400 

Multiplying 
Coefficient

Coarse 
Classificatio

n Rate 

Coarse 
Classification 
Time (msec.) 

Whole 
Recognition 

Rate 

Whole 
Recognition 
Time (msec.)

1 50.2 3.16 50 4.82 
1.05 61.6 3.19 61.2 5.71 
1.1 71.9 3.25 71.4 6.6 
1.15 80.2 3.33 79.6 7.34 
1.2 86.3 3.45 85.7 7.92 
1.25 90.6 3.62 90 8.42 
1.3 93.6 3.84 92.9 8.67 
1.35 95.5 4.1 94.8 9.32 
1.4 96.8 4.41 96 9.75 
1.45 97.6 4.77 96.6 10.21 
1.5 98.1 5.58 97.3 10.71 
1.55 98.5 6.02 97.6 11.2 
1.6 98.8 6.46 97.9 11.7 
1.65 98.9 6.92 98 12.2 
1.7 99 7.8 98.1 12.74 
1.75 99.1 8.09 98.2 13.29 
1.8 99.1 8.63 98.2 13.7 
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Fig.8 Coarse classification performances for 400 clusters. 
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Fig.9 Whole recognizer performances for 400 clusters 
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Table 4 , Fig. 8 and Fig.9 show the performances of the 
coarse classifier and the whole recognizer with respect to 
the range of the multiplying coefficient m when the 
prototypes vectors are divided into 400 clusters. When the 
multiplying coefficient m is 1.75, the same coarse 
classification rate as the original is achieved for 8.02 msec. 
That is 62% of the original 13 msec. and the same 
recognition rate is realized in 13.24 msec. (65.9%) from 
20.1msec.  

(2) Optimal clustering size for Method-II 
Table 5 shows the coarse classification time and the whole 
recognition time when the coarse classification rate is 
around 99.1% and the recognition rate is around 98.2%. It 
is achieved for different clustering numbers (2 to 1,300) 
for the prototypes with the multiplying coefficient 
adjusted. Fig. 10 summarizes them. 

Although the whole recognition time is linear to the 

coarse classification time in the meaningful range of the 
number of clusters in Method I, here we can see that the 
whole recognition time is almost flat regardless of the 
coarse classification time.  

It is clear that the least coarse classification time can be 
obtained when the number of clusters is around 250, and 
the coarse classification time increases fast as clusters are 
less than 150 and increases gradually as they are larger 
than 500. For the whole recognition time, however, we 
find that the minimum time is achieved when the number 
of clusters is 500. This means that the best point for the 
fine recognition time is shifted from that of the coarse 
classification and has a relatively wide optimal range. 

The reason of these can be explained as follows. When 
Method II is used to select candidate clusters, there might 
be a few clusters near the input pattern for some test 
patterns with each cluster having only a small number of 
prototype (as the number of clusters increases, the number 
of prototypes in each cluster decreases), thus the total 
number of candidate prototypes could less than 40, which 
leads to the final recognition time reduced too. While the 
number of clusters is 250, although the coarse 
classification time is shortest, there are almost 40 
candidate prototypes need to be transferred to the fine 
classification for every input pattern. While the number of 
clusters is 500 or more, the coarse classification time is 
slightly longer, but the number of candidate prototypes is 
likely less than 40 with the result that the recognition time 
is less than that when the number of clusters is 250. As the 
number of clusters increases from 250, the coarse 
classification time increases gradually, but the final 
classification time decreases due to the above reason, so 
the increase of the total recognition time is very small. 

Although the characteristic of Method II is a bit 
different from Method I, we can also obtain similar 
advantages using Method I. 

When we divide it into 250 clusters, the coarse 
classification time is reduced to 7.98 msec. (i.e., 61.4% 
from 13 msec.) and the whole recognition time reduced 
from 20.1 msec. to 13.31 msec. (66.1%) while achieving 
recognition rate of 98.2%. 

When we divide it into 500 clusters, the coarse 
classification time is reduced to 8.21 msec. i.e., 63.2% 
from 13 msec. and the whole recognition time reduced 
from 13.24 msec. to 20.1 msec. (66%) while achieving a 
98.2% recognition rate. Since the total performance is 
more important, this condition should be selected. 

The multiplying coefficient is stable to produce the best 
performances if it is in the range 1.7-1.8. 

3.3.4 Evaluation on the testing set 

Through the experiments above, we have understood the 
characteristic of SSS, obtained the necessary parameters of 

Table 5. Performances when coarse classification accumulative rate is 
around 99.1% and whole classification rate is around 98.2% 

Cluster Number Multiplying 
Coefficient 

Coarse 
Classification 
Time (msec.) 

Whole 
Classification 
Time (msec.) 

2 1.7 10.31 16.1 
50 1.675 9.03 14.87 
100 1.7 8.62 14.25 
150 1.715 8.19 13.71 
200 1.715 8.01 13.49 
250 1.71 7.98 13.31 
300 1.745 8.08 13.28 
350 1.765 8.11 13.35 
400 1.75 8.09 13.29 
450 1.785 8.17 13.29 
500 1.875 8.21 13.25 
550 1.785 8.31 13.26 
600 1.785 8.36 13.28 
650 1.795 8.47 13.29 
700 1.8 8.53 13.32 
900 1.84 8.79 14.01 

1100 1.85 9.51 14.85 
1300 1.85 10.1 15.19 
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Fig. 10 Pre-classification settings satisfying 99.1% rate for Method-II. 
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the two candidate selection methods and found out the 
optimal number of clusters. Then, we adopt these obtained 
data to test the testing set in order to further verify the 
characteristic of SSS. The result shows that the coarse 
classification and whole recognition are accelerated too, 
and the characteristic of SSS is valid to the test patterns as 
well as the training patterns.  
    Looking at the table 6, when we adopt the candidate 
selection method-I and corresponding parameters, the 
coarse classification time is reduced to about 63% from 
the original 13 msec., and the whole recognition time is 
reduced to 14.38 msec. (71.1% of original 20.1 msec.), 
without sacrificing the original recognition rate at all. If 
we sacrifice the rates we can get further reduction of 
processing time.  

When we adopt the candidate selection method-II and 
corresponding parameters, if we keep the recognition rate 
as original, the acceleration effect is as same as for the 
training set, If we allow the rates degraded, we can get 
further speed-up. 

 
4. Hybrid candidate selection 
 

Although the two candidate selection algorithms 
produced almost the same results, detailed examination 
revealed different characteristics between them. 

When Algorithm-I is employed, the final prototype 
candidates in the candidate clusters can be limited to a 
relatively small and stable range, but this algorithm must 
spend much time to sort all the candidates by their scores 

(obtained through comparing them with an input pattern). 
On the other hand, Algorithm-II does not need to sort the 
candidates, but the number of candidates has a wide 
variable range, for example, from several tens for some 
input patterns to nearly 1,100 for others.  

Here, we also propose a hybrid algorithm to use the 
advantages of both the algorithms. At first, we use 
Algorithm-II for its high speed and reduce the number of 
candidates, and then use Algorithm-I to further reduce 
their number. Of course, for some categories of input 

patterns, if the output of Algorithm-II (the number of 
candidates for the fine classification) is less than m of 
Algorithm-I, Algorithm-I is skipped.  

Hybrid candidate selection is applicable to the SSS 
stage and the coarse classification stage in the diagram 
shown in Fig. 2. 

4.1 Experiments for SSS 

We employ the values of the multiplying coefficient m for 
Algorithm-II and the constant l for the number of 
candidates for Algorithm-I obtained through the 
experiments in section 3.3. 

Since the objective of the following experiments is to 
test the effect of hybrid candidate selection on  
acceleration, we do not need to test all the possible 
divisions of the prototypes into a different number of 
clusters. We only choose the case as the base experiment, 
in which the prototypes are divided into 400 clusters  

At the points with original recognition rate, after we 
adopted the “1.75” and “130” in the hybrid method, the 
coarse classification time was further reduced to about 
8.06 msec. (62% of original 13 msec.) and whole 
recognition time was further reduced to about 12.44 msec. 
(61.9% of original 20.1 msec.). Both the coarse 
classification and recognition rates are kept to the original 
recognition rate. 

This is because all the necessary prototypes were 
included within the candidates after using the multiplying 
coefficient method. When we later used the fixed 
candidate number method, the necessary prototypes were 
still included within the final candidates. 

From the above experiments and analysis, we can affirm 
that the hybrid candidate selection is an effective method 
to accelerate the recognition while keeping the original 
recognition rate. For this case the coarse classification 
time was reduced to about 62%; the recognition time was 
reduced to about 61.9% of original time. 

4.2 Experiments for coarse classification 

Actually, in the coarse classification, it is also needed a 
candidate selection approach too. The original method 
only adopted fixed candidate number method. After 
adopting the hybrid method with original fixed candidate 
number 40 and multiplying coefficients 1.8, the coarse 
classification time was reduced to 7.28 milliseconds (56% 
of originial time); the whole recognition time was reduced 
to 10.5 milliseconds (52.2% of originial time) without 
sacrificing the coarse classification rate. 

5. Conclusion 

This paper presented “structuring search space” (SSS) 

Table 6. Compare of SSS between the training set and the testing set 

 

Coarse 
Classification 
Time (msec.) 

Coarse 
Classification 

Rate (%) 

Whole 
Recognition

Time 
(msec.) 

Whole 
Recognitio
n Rate (%)

Training 
Set 8.21 99.1 14.39 98.2 Candidate 

Cluster 
Selection 
Method-I 

Testing 
Set 8.25 99.5 14.38 97.7 

Training 
Set 8.01 99.1 13.24 98.2 Candidate 

Cluster 
Selection 
Method-II 

Testing 
Set 8.04 99.5 13.31 97.7 
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method in order to accelerate recognition of large 
character sets. We also considered two ways of candidate 
selection and finally combined them into the hybrid 
candidate selection method. We applied the SSS method 
to a practical off-line Japanese character recognizer and 
verified that the coarse classification time and the whole 
recognition time were reduced to 61.4% and 66%, 
respectively from the original system without sacrificing 
coarse classification and recognition rates. The hybrid 
candidate selection further accelerated the coarse 
classification and whole recognition time to 56% and 52% 
from the original system, respectively. If we are allowed to 
sacrifice recognition rate, we can further speed up the 
recognition process. 
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