【問題】 次の各問に答え、数値または式を解答欄に記入しなさい([3] は正解を で囲む)。

- igl[1] $f(x,y) = \logigl(1+rac{2y}{x}igr)$ とおく。第二次偏導関数 f_{xy} の点 (2,1) における値を求めよ。
- [2] 曲面 $z=x^2+xy+2y^2$ の点 (1,1,4) における接平面の方程式を求めよ。
- [3] $f(x,y) = x^3 3xy + y^3$ が極値をとる点 (x,y) を求め、その極値が極大値であるか極小値であるかを書け。
- [4] $f(x,y)=x^5+3x^2y+y^3-2y+1$ とおく。曲線 C:f(x,y)=0 上の点 (1,-1) における C の接線の方程式を求めよ。
- [5] 領域 $D:1 \leq xy, \ x^2 \leq y \leq 4$ とする。重積分 $\iint_D (2xy-3) \, dxdy$ を求めよ。
- [6] 領域 $D:-1 \le x+y \le 1, \ 0 \le x-y \le 1$ とする。 $u=x+y, \ v=x-y$ によって変数 x,y を u,v に変換して重積分 $\iint_D \frac{x^2-2xy+y^2}{x+y+2} \, dxdy$ を求めよ。
- [7] 曲面 $z=3-x^2-y^2$ と平面 z=2 とで囲まれる立体の体積を求めよ。
- [8] 平面 2x + 2y z = 0 のうち、 $z \ge x^2 + y^2$ にある部分の面積を求めよ。
- igl[9] 級数 $\sum_{n=1}^{\infty}rac{n^{n-1}}{(n-1)!}\,x^n$ の収束半径を求めよ。
- $igl[oldsymbol{10} igr] \quad -rac{1}{2} < x < rac{1}{2}$ において関数 $rac{1}{(1-2x)^2}$ のベキ級数展開を $\sum_{n=0}^\infty a_n x^n$ とおく。定数 $a_2,\,a_3$ を求めよ。

解答欄

1	2		3		4	
			(,)		
			`			
			極大値	• 極小値		
5	6	7		8	9	

		1	
10			
_	_		

10			
a_2	a_3		

学科:	学籍番号:	氏名: