生体機能の非侵襲検査へ向けた新たな取り組み ――超音波で電気・磁気を測る――

生嶋 健司* 東京農工大学 大学院工学研究院 先端物理工学部門 *Kenji IKUSHIMA*

Abstract

超音波の高い内部透過性を利用し,電気・磁気特性を非侵襲に検査するイメージング技術を 開発した.その計測原理は,(1)超音波により物体内の電気分極・磁化に時間変調を与え,(2)それ に起因する電磁放射(音響誘起電磁放射)を検出・復調し,(3)対象物の電気・磁気特性を非破壊に 評価する,ことである.開発動機や生体機能測定へ向けた展望を含めて,この取り組みを紹介する.

キーワード:超音波,電磁波,非侵襲イメージング,圧電,磁歪,生体信号,SQUID

1 はじめに

生体内の幾何学的構造を非侵襲に画像化する計測 技術は,超音波診断,X線検査および核磁気共鳴 (NMR) 法の応用により, いまやリアルタイム画像, 毛細血管まで見える1 mm 以下の空間分解能,3次 元グラフィックが可能になっている.しかしながら, 生体内の機能特性に由来する電気や磁気の特性分布 を可視化するとなると,その手法は極めて限られて しまう.たとえば,脳機能イメージングで知られる fMRI(機能的磁気共鳴画像法),近赤外トポグラ フィーあるいは PET (ポジトロン断層法) は神経活 動そのものである電場や磁場の発生を測定している わけではなく,血流量や血液中の酸素濃度,代謝量 から神経活動の場所を割り出している.これらの手 法は研究・医療現場において既に活躍しているが, 神経活動によって血流に何らかの変化が起きるまで の遅延時間が数秒程度はあると考えられているため, 時間分解能に本質的な限界がある(血流は周囲に拡 散するので空間分解能についても計測方法上の限界 があり,同種の方法で得られる構造に対する空間分 解能と比べるとはるかに劣る).一方,神経活動に伴 う直接的な物理量,つまり電場を測る方法としては, 脳電図 (EEG) や心電図 (ECG) が挙げられる.しか

*〒 184-8588 東京都小金井市中町 2-24-16 tel & fax 042-388-7120 E-mail/ikushima@cc.tuat.ac.jp

しながら、これらは測定電場から逆問題を解いて位 置を推測する必要があるので空間分解測定はあまり 期待できない.また,このようなパッシブな電場計 測は,体内で生じる様々な電気的信号(脳波や他の 筋組織が生じる電場)の影響を排除できず,局所的 な活動電位を検知する手法としては適切でない.ま た,背景ノイズの少ない磁場をターゲットにした脳 磁計は、ニューロン電流によって誘起される磁場を 検出するので時間分解能は高く,直接的に神経活動 を検知する方法である.しかしながら,やはり体外 で測定した磁場をもとに電流発生の向きや位置を逆 問題として解く必要があるので,間接的位置推定と なる. 例えば複数の部位が同時に活動している場合 はその特定が難しくなる.また,深部や表面に法線 方向に向かう電流領域の磁場検出は困難であり,診 断領域に制約が多い.

生体に限らず,物体内部を非破壊に調べることは 本質的に多くの技術的制約を伴うが,電気・磁気特 性となるとさらにその困難さを実感する.約0.1 V の神経活動電位は,現代の電気測定技術にとって決 して小さな電圧ではなく,体内に電極を刺すことが 許されるなら容易に測定可能である.しかしながら, 体中を絶え間なく伝搬するこの活動電位を非侵襲に そしてリアルタイムに断層画像化することは,映画 「アバター」では可能になっているが現実の世界で はまだ夢物語である.既存の計測手法が改良されれ

特集

ば解決できる問題でもないように筆者は思う.これ らの問題意識をもった上で,筆者は新しい検査法を 測定原理のレベルから追求することが必要だと感じ た.本稿では,まだ道半ばであるが,超音波を利用 した測定アイデアとその基礎実験について紹介する.

 2 どうやって超音波で電気・磁気特性を測 るか?-音響誘起電磁放射(ASEM 放 射)の利用-

超音波計測は人体や構造物への非破壊検査として 広く利用されている.その重要な利点のひとつは, 光の透過が困難な生体,金属,コンクリートブロッ クのような対象物に対して超音波は内部透過性が高 いことである.また,音速と光速の大きな違いに起 因して, 音波は電磁波に比べて同一周波数で波長が 約5桁短い.これは、ミリメータ/マイクロメータ のフォーカス(すなわち空間分解能)が実時間波形 の取得が容易な MHz/GHz 周波数帯において実現可 能であることを意味する.ところが,超音波のこれ らの利点にもかかわらず,その多くの利用は,対象 物の質量密度分布や弾性的特性の検査に限られてい る-すなわち、"傷や異物"は検知するが、"電気や磁 気"はプローブしない.そこで我々は,超音波の特 徴を活かしながら電気・磁気的性質を非破壊イメー ジングする計測手法の開発に取り組んだ.

弾性波である音波は,電磁波のように直接的に電 気・磁気特性と結合しない.しかしながら,弾性変 調は,固体の格子歪みや液体の密度変化を通してし ばしば対象物の電荷や磁気モーメントに時間変調を 与えることができる.このことは,超音波照射する と,双極子放射により超音波と同一周波数の電磁波 (通常 RF 波 - マイクロ波)が発生し得ることを意味 する(図1).ここでは,超音波によって励起される 電磁波を音響誘起電磁波 (Acoustically Stimulated ElectroMagnetic (ASEM) wave) と呼ぶことにする. 実際,固体に関しては,イオン結晶中を伝搬する音波 とそれに伴って発生する電磁波が理論的に考察され ている¹⁾.固体物質ならピエゾ効果や磁歪効果を通 して ASEM 波が放射されるだろう.液晶や燃料電池 などに含まれるコロイド溶液・イオン電解水の場合な ら,製品動作時に生じる局所的な電荷中性条件の破

図1 音響誘起電磁波放射の概念図

れ(すなわち,電束密度勾配の発生)が ASEM 放射 の発生原因になり得るだろう.また,より興味深い応 用として,脳を代表とする神経組織および筋組織の 活動状態の非侵襲検知が考えられる.神経組織は細 胞内外のイオン濃度制御により活動電位を伝播させ、 情報伝達・処理を行っている.音波収束ビームは,そ の局所的なイオン濃度(あるいはそれに伴う媒体の 電束密度勾配)に時間・空間変調を与え,電磁放射を 誘発するはずである.つまり,ASEM 計測は,対象 物の電荷や磁化に超音波を通して変調を加え、電磁 放射の形でこれらの情報を外部発信させる手法と見 なすことができる.前述したように,音波は電磁波 よりも同一周波数で空間分解能を5桁高くすること ができる.よって,音波収束ビームの走査により比 較的高分解能の画像化が可能である(10 MHz の電 波の波長は30mに対して水中音波の波長は150μm である).以上が,我々が提案した計測原理である 2).

ところが,長い音波計測の歴史の中で,音波によ り誘起される電磁波に関する学術論文や特許は極め て少ない.関連するものとして,音響デバイスのワイ ヤレス動作に関するもの^{3),4)},地球物理学における 岩石破壊によって生じる電磁波⁵⁾などが挙げられる が,測定対象物からの微弱な信号を検出してイメー ジング計測へ応用するといった報告は我々の調べた 限り皆無である.また,本計測を反転した方法,すな わち電磁波(RF波~近赤外光)照射により発生し た超音波を検知する方法は,Photoacoustic imaging

図2 測定概念図⁷⁾.(a) 水侵タイプ.(b) 非浸水プローブタイプ.(c) 超音波のスペクトル.

と呼ばれ最近活発に研究が行われている⁶⁾.しかし ながら,この方法は,fMRIや近赤外トポグラフィー と同様,電磁波吸収を通して人体の水濃度分布や血 液中の酸素濃度分布を画像化しようとするものであ り,体内の電気・磁気的情報を獲得するものではな い.よって,ASEM計測は全くの新技術構想であり, 我々は測定方式の具体的検討と基礎データの収集か ら研究を開始した.

3 ASEM 放射の検出

ASEM 放射の特徴の一つは,音波周波数で変調された狭帯域な信号という点である.例えば心電図や 脳磁計のように体内の電磁気信号をパッシブに測定 する場合と異なり,本測定は環境ノイズをカットす る狭帯域検波ができるという点で有利である.そこ で,図2に示す測定系を立ち上げた⁷⁾.RF 受信は チューニング可能な狭帯域ループアンテナを用い, 低雑音アンプにより90 dB 程度増幅してデジタルオ シロスコープで信号積算する(直接検波).または 図3に示すブロックダイアグラムを用いてヘテロダ イン検波も可能にした.

本測定で最も危惧すべき点は,トランスデューサ からの信号ノイズである.このトランスデューサノ イズは目的信号と同じ周波数帯であるから,当然,狭 帯域検波でも逃れることはできない.トランスデュー サノイズは,測定試料からのASEM 信号よりもは るかに強大であると予想されることから,図4の上 図のように試料とトランスデューサを密着させると, ノイズに埋もれて目的信号はまず得られない.そこ で, 音波遅延時間を利用するパルス法を用いる. 例 えば,水中の音速は1500 m/s であるから,音波が 60 mm 伝搬するのに 40 µs の遅延時間が生じる.-方,電磁波の伝搬時間は無視できるほど短い.した がって,トランスデューサと試料の間に音波媒体を 設け, 音波伝搬時間より十分短い超音波励起パルス を用いることにより、トランスデューサノイズと試 料からの目的信号を図4下図のように時間的に分離 することが可能である.本研究では,音波媒体とし て水を用い,水侵法(図2(a))と非水侵プローブ法 (図 2(b))の2種類の方式を開発した.

初期実験は,60 mm 付近に収束ゾーンをもつ

マテリアルインテグレーション Vol.23 No.09 (2010)

図3 ヘテロダイン検波のブロックダイアグラム

図4 パルス法概念図.

10 MHz 医療用 PVDF (polyvinylidene fluoride) ト ランスデューサを用いてピエゾ物質の一つである半 導体 GaAs に対して行われた.パルサー/レシーバー (Panametrics-NDT, 5077PR)を用いて,約50 ns, 100-200 V の矩形波励起パルスを100-500 Hz の繰 り返しで印加した.RF信号は,超音波周波数にセッ トされたバンド幅約200 kHz の狭帯域ループアンテ ナによって検出される.また,広帯域八イドロフォ ンを用いて,PVDF トランスデューサから照射され る超音波が,焦点位置66 mmで約1.4 mmのスポッ トに収束されていること,および9.25 MHz にピー クをもつスペクトル (図1(c)) であることが確認さ れている⁷⁾.

GaAs のピエゾ係数は, $|d_{14}| = 2.7 \text{ pC/N}^{8}$ である.したがって,縦音波の波数ベクトルkが <110>のピエゾ軸に平行なときに電気分極が誘起され,電磁放射が期待される.測定は,図1(a)の水侵法で行った.図5左図に,厚み0.35 mmのノンドープGaAs(110)結晶で測定した通常の超音波エコー信号(図5左図(a))とループアンテナで検出した RF信号(図5左図(b)と(c))を示す.ここでt=0 μ sとt=88 μ sの信号は,励起パルスと超音波エコーに起因した PVDFトランスデューサからのノイズである. 一方,エコー信号のちょうど半分の時間(t=44 μ s)で,より弱い信号が検出されていることがわかる.エ

0

図5 (左図) GaAs(110) からのエコー信号と ASEM 信号 (右図) Si, GaAs(110) 及び GaAs(100) の比較.

120

コー信号到達時間の半分ということから,時刻 44 μ s で観測された信号は測定試料 (GaAs) から放射され たものであると識別される.図5右図のように,同じ 測定系で試料をSiおよびGaAs(100) に置き換える と,非ピエゾ物質のSiは信号検出されず,GaAs(100) 結晶の信号強度は (110) 結晶より圧倒的に小さいこ とが確認された.これらの結果から,時刻 44 μ s の RF 信号はGaAs のピエゾ効果に起因する ASEM 信 号であると結論できる.

6

4

2

0

0

40

time(µs)

80

EM Intensity (arb. units)

ヘテロダイン検波によって RF 信号の抱絡線を測定 し(図5 左図(c)),周波数スイープにより放射スペ クトルを得ることもできる(図6).周波数 7.6 MHz で観測されるシャープな共鳴ピークは 0.35 mm 厚 の GaAs 結晶の機械共振であることがわかる(GaAs 中の音速 4730 m/s^{?)}).機械共振周波数では信号 強度が一桁程度増大するが,注目点は共振条件にな くとも超音波によって誘起される電磁波が検出可能 だということである.

生体高分子結晶は通常反転対称性が無いので,骨, 植物繊維,筋肉,血管など多くの生体組織がピエゾ 効果を示すことが知られている¹⁰⁾⁻¹³⁾.したがっ て,圧力,電磁気,超音波の生体効果に関する多く の医学研究が圧力による電気分極効果の重要性を指 摘している¹³⁾⁻¹⁵⁾(一例として,超音波による骨 折の早期治癒が期待されている).そこで,我々は

マテリアルインテグレーション Vol.23 No.09 (2010)

40 time(μs)

80

120

図 6 GaAs(110) の ASEM スペクトル.

骨組織の ASEM 信号検出を試みた.骨は約70%の hydroxyapatite (HAP) と約20%の配向したコラー ゲン繊維で構成されている.後者のコラーゲンがピ エゾ効果 ($|d| \sim 0.1 \text{ pC/N}^{10}$)に寄与すると考え られている.図7(a)に豚の肋骨から検出したASEM 信号を示す.挿入図は実際に測定した骨の写真であ る.測定は同じPVDFトランスデューサを用いて浸 水法で行われた.信号は97 dB 増幅され,500 Hz 繰 り返しで約10分間積算されている.GaAs に比べて はるかに微弱であるが,明確に骨からのASEM 信

特集

図7 様々な物質からの ASEM 信号⁷⁾

号が検出された.水中での骨のピエゾ効果は周辺イ オンによってスクリーニングされることが報告され ているが¹⁶⁾,その時間応答は MHz 帯よりもはるか に遅いので本測定では無視することができる⁵⁾.し たがって,通常,乾燥骨によって圧電効果が測定さ れるが,本計測法を用いれば,生体組織内の生きて いる骨組織の圧電効果を非侵襲に測定できる可能性 がある.骨強度の改善にはコラーゲン密度が重要と 言われているが,本手法はコラーゲン密度診断に発 展できるかもしれない.

一方, 非侵水プローブ法を用いれば, 木やプラス ティックなどの素材を測定することが可能である.極 めて微弱だが,実際に木やポリプロピレンなどの汎 用プラスティックから ASEM 信号が検出された(図 7(b)と(c))⁷⁾.木については,基本構成物である セルロースのピエゾ効果¹²⁾が報告されている.プ ラスティック材料(結晶はピエゾ効果を示す)は通 常アモルファス構造であるので,ASEM 信号の検出 はわずかな結晶グレインの存在を示唆している.

これらのピエゾ物質群だけに留まらず,磁性材料 からのASEM信号検出にも成功した.図7(d)にフェ ライト(SrO/Fe₂O₃)からの検出信号を示す.ここ で,試料形状は挿入図に示すような20mm×15mm の円柱である.実時間波形におけるくし状構造した 信号は,試料の表面で超音波が多重反射しているこ とを反映している.磁性体では,スピン-軌道相互 作用を通して,格子の歪みがスピン分極を変化させ ることが知られているので(磁歪),超音波による 磁気モーメントの変調が電磁放射の原因と考えられ る.本結果により,磁気情報を超音波により非接触 に検出できることが明らかになった.

4 ASEM 放射イメージング

我々は最近,このASEM法による磁気イメージン グを試みた^{17),18)}.磁気モーメントの時間変調は電 磁放射を誘発するはずで、結果として磁化分布の画 像化が期待できる.図8(a)は,Fe箔,Cu箔,フェ ライト破片を画像化したものである.非磁性 Cuか らは信号が観測されず,フェライトが選択画像され ている.ここで, Fe 箔に注目すると, 試料端近傍で 電磁放射が起きていることがわかる .Fe 箔について 詳細にイメージングを測定した結果が図8(b)と(c) である.図8(b)で試料端から放射が得られている ことがはっきりわかる.純粋な Fe は強磁性だがマ ルチドメイン構造によりマクロなスケールでは自発 磁化は無いはずである.一般に歪やストレスを加え ると単磁区化により磁化が発生することが知られて いるので,本実験での試料端における放射は試料切 り出しによる磁化発生と考えられる.この仮説を確

2<u>mm</u>

図8 磁性体の ASEM 放射イメージング. (a) Fe, Cu フェライトのイメージング. (b) Fe ホイルのイメー ジング(折り曲げ前). (c) Fe ホイルのイメージン グ(中央で折り曲げ後).

かめるために, Fe ホイルを中央部で一度折り曲げて 再び元に戻してイメージングを測定した(図8(c)). 実際,折り曲げ部分で放射が発生することが確認される.

同様に,ほぼ非磁性であるステンレス板(SUS304) の測定も行った.折り曲げて永久磁石により励磁し てから測定した.この試料のイメージング結果を図9 に示す.折り曲げ部でASEM 放射が発生しているこ とがわかる.オーステナイト系ステンレス(SUS304) は外部ストレスによりマルテンサイト転移すること が知られている.この転移に伴い強磁性が発現し, 磁化を帯びる.実際,ホールセンサーで表面磁場を 測定すると試料側端部で10ガウス程度の磁場が観 測された.また,図9(b)に示すように,微細なパ ターンも観測されているが,これは外観では確認さ れないものである.ここでは省略するが,実時間波 形の解析により、この微細パターンは磁気分布では なく, 音波の板波モードによる効果であることが判 明している. 試料厚みが音波波長程度のときは音波 の共振モードが励起するので,実時間波形の解析を 通して収束スポット内で発生した ASEM 信号だけ を抽出し,真の磁化分布へと校正する.これらの結

マテリアルインテグレーション Vol.23 No.09 (2010)

図9 ステンレス板 (SUS304)のイメージング.中 央で折り曲げ,励磁後測定.折り曲げ部で ASEM 放 射が観測されている.

5mm

果により,超音波により磁化を画像化できることを 立証した.ホールセンサーを用いた表面磁化イメー ジングなど磁気イメージングの手法は数多く開発さ れているが,超音波の内部透過性を考えると,本手 法は非破壊内部検査としての高いアドバンテージを 有している.

そこで図 10 のようなファントム (寒天)を作って 断層画像化のデモを行った¹⁸⁾.図 11 はファントム

図 10 断層画像のデモ実験

中に埋め込んだ金属アルミとフェライトの破片を通 常のエコー法と ASEM 法で見た断層画像の比較で ある.試料位置を共通にするために時間軸を校正し ている(ASEM 法における信号遅延時間はエコー法 の半分である).図11 右図の ASEM 法ではフェラ

図11 超音波による磁性材料の選択的断層画像

イトだけがうまく識別されることがわかる.本計測 手法における最大の特徴は超音波エコー検査を同時 に測定できることである.現場の検査では,(1)エ コー法において内部の異物を発見し,(2)ASEM法 によりその異物の電気・磁気特性を選別する,とい う使い方が有効だろう.産業分野への応用を視野に 入れて今後具体的な活用方法を探索する予定である.

5 さらなる高感度化への試み

上記実験により,ASEM 検出とその画像化が立証 されたので,次のステップは元来の開発動機である 生体機能検出である.そのための必要条件は感度の さらなる改善である.感度改善の手段としては次の 3つが考えられる.(1)アンテナアレイにより全立 体角に渡って放射される電磁波をもれなく検出する. これは感度向上ばかりでなく,放射分布の測定を可 能にする点で興味深い.(2)位相干渉検波をする.現 在のヘテロダイン検波システムは,超音波パルスの 位相と相関をもっていない.そこで超音波励起パル スをバースト波にして参照信号と位相相関をもたせ る.感度向上のほかに位相情報の獲得という新たな 利点が生まれる.(3)超伝導量子干渉素子(SQUID) を利用して,地磁気の一億分の1の磁場を検出する. 最初の(1)と(2)は,現状と比較して,感度改善因 子は 10 倍を超えるものではないだろう.一方,(3) の SQUID を導入すると桁違いの感度改善が期待で きる.ここでは(3)の取り組みに付いて紹介する. 図 12 に本研究で用いる dc-SQUID を示す.dc-

2 dc-SQUID

SQUID はジョセフソン接合が2個作製された超伝 導素子である.検出コイルにより誘起された電流は 入力コイルを通してSQUID に磁束を発生する.通 常の検出コイルは逆巻きにした二つのペアになって

図 13 磁気シールド内の SQUID システム.

おり,背景磁場ノイズを避けるために磁場勾配を測 定している (グラディオメーター). SQUID は物質 評価装置,脳磁計あるいはNMR など極微弱な磁場 検出のための極限技術として既に実用化されている. しかしながら, 汎用 SQUID の周波数帯域は 50 kHz 以下に限られ, MHz 帯の RF 検出はできない.ただ し,微小デバイスである SQUID の本質的な動作速 度は GHz 帯域であり,動作速度を制限しているの は周辺エレクトロニクスである読み出し回路である. 近年, SQUID の高速動作を試みる開発がドイツの Drung らにより行われ¹⁹⁾, その技術に基づいたベン チャー企業 (Magnicon 社) が設立された-標準的な 読み出し回路では,変調コイルがSQUIDと結合し, ロックイン測定を通して FLL される.一方, Drung らにより新しく開発された読み出し回路では,変調 コイルは無く, SQUID に DC 電流を印加して出力 電圧を直接読み出す方式を採用している-.直接結合 型読み出し回路により, FLL 動作で 300 kHz, FLL 動作無しでは6 MHz のダイナミックレンジを確保 することができる.

筆者らは平成20年度に東京農工大学に新しい研 究室を立ち上げ,この高速動作SQUIDシステムを セットアップした(図13).背景磁場ノイズおよび 外来電波を遮断するために,外側に3層の磁気シー ルド(ミューメタル)と2層の高周波シールド(ア

マテリアルインテグレーション Vol.23 No.09 (2010)

ルミ,銅網ファラデーケージ)を施した.図14は SQUID で検出した RF 信号 (3.25 MHz)である.

図 14 SQUID で検出した RF 信号 (3.25 MHz).

この SQUID システムで小動物(ラット)の心磁 応答の観測を試みた.図15に示すように,ECG に 同期した生体磁場が SQUID により明瞭に観測され た.この心磁応答を超音波で高周波変調し,それを 検出して復調することが我々が目指す神経組織の局 所活動の非侵襲検知である.今後,SQUID システ ムのピックアップコイル部を狭帯域化して,超音波 計測装置と融合することにより,映画「アバター」 で見られた夢の実現を目指したい.

6 おわりに

本研究は平成 18 年度にアイデアのみの段階で NEDO 産業技術研究助成に採択して頂き,ここま で開発を進めてきた.まだ基礎研究の域を超えてい ないが,興味深い応用が見出されつつある.本稿では 詳しく述べなかったが,圧電材料における板波モー ドの可視化・分析や磁気イメージングによる金属脆 化検査が有望と考えられる.本研究は有りそうで無 かった新計測技術構想であるから,この手法を使っ て我々が今考えている以上に有益な応用があるかも しれない.目的を特化することにより,実践的な計 測システムの開発ができるだろう.

一方で,興味深い応用として最初に述べた神経・ 筋活動の超音波変調とその信号検出に関しては,人 類がどこまで微弱なラジオ波帯の電磁場を検出でき るか?」という一種の科学的挑戦でもある.我々は,

図 15 SQUID によるラットの心磁応答

超伝導量子干渉素子(SQUID)や極低温アンプなど を導入して,ラジオ波帯の極限感度検出技術を開拓 している.この検出感度の圧倒的改善によって,生 命活動に起因したASEM信号を検出することがこ れからの楽しみである.

[参考文献]

- 1) J. J. Kyame, J. Acoust. Soc. Am. 21, 159 (1949).
- 2) 生嶋健司,小宮山進 PCT 国際出願 PCT/JP2006/316028.
- 3) H. Ogi, H. Hiho, and M. Hirao, Appl. Phys. Lett. 88, 141110 (2006).
- 4) M. Thompson, S. M. Ballantyne, L-E Cheran, A. C. Stevenson and C. R. Lowe, *Analyst* 128, 1048 (2003).
- 5) S. Yoshida and T. Ogawa, J. Geophys. Res. 109, B09204 (2004).
- 6) M. Xu and L. V. Wang, Rev. Sci. Instrum. 77, 041101 (2006).
- 7) K. Ikushima, S. Watanuki and S. Komiyama, *Appl. Phys. Lett.* 89, 194103 (2006).

- 8) S. Adachi, J. Appl. Phys. 58, R1 (1985).
- 9) O. Madelung, Semiconductors Group IV Elements and III - V Compounds (Springer, Berlin, 1991).
- 10) E. Fukada and I. Yasuda, J. Phys. Soc. Jpn. 12, 1158 (1957).
- 11) E. Fukada and I. Yasuda, Jpn. J. Appl. Phys. 3, 117 (1964).
- 12) E. Fukada, J. Phys. Soc. Jpn. 10, 149 (1955).
- 13) E. Fukada, IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 47, 1277 (2000).
- 14) A. A. Marino and R. O. Becker, *Nature (London)* 228, 473 (1970).
- 15) C. T. Brighton and S. R. Pollack eds., *Electro-magnetics in Medicine and Biology* (San Francisco Press, San Francisco, 1991).
- 16) S. R. Pollack, E. Korostoff, W. Starkbaum, and W. Iannicone, *Electrical Properties of Bone and Cartilage* (Grune & Stratton, New York, 1979), pp.69-81, E. Fukuda, *Ferroelectric Polymers* (Marcel Dekker, Inc., New York, 1995), pp.393-434.
- 17) K. Ikushima, H. Toida, S. Komiyama, Proceedings of Symposium on Ultrasonic Electronics 29, 349 (2008).
- 18) H. Yamada, K. Nakamoto, K. Ikushima, Proceedings of Symposium on Ultrasonic Electronics 30, 57 (2009).
- 19) D. Drung, Physica C 368, 134 (2002).